0000000001312496

AUTHOR

Laura Anspach

Gold nanoparticle interactions with endothelial cells cultured under physiological conditions

PEGylated gold nanoparticles (AuNPs) have an extended circulation time after intravenous injection in vivo and exhibit favorable properties for biosensing, diagnostic imaging, and cancer treatment. No impact of PEGylated AuNPs on the barrier forming properties of endothelial cells (ECs) has been reported, but recent studies demonstrated that unexpected effects on erythrocytes are observed. Almost all studies to date have been with static-cultured ECs. Herein, ECs maintained under physiological cyclic stretch and flow conditions and used to generate a blood-brain barrier model were exposed to 20 nm PEGylated AuNPs. An evaluation of toxic effects, cell stress, the release profile of pro-infla…

research product

Endoplasmic reticulum‐resident chaperones modulate the inflammatory and angiogenic responses of endothelial cells

SummaryBackground Wound healing depends on a well-balanced regulation of inflammation and angiogenesis. In chronic wounds the healing process is disturbed and inflammation persists. Regulation of wound closure is controlled by transmembrane and extracellular proteins, the folding and maturation of which occur in the endoplasmic reticulum (ER) by ER-resident chaperone machinery. Objectives To study the role of the ER-resident chaperones BiP/Grp78, its cochaperone Mdg1/ERdJ4, and Grp94 in chronic, nonhealing wounds. Methods Immunohistochemical staining of these chaperones in individual human biopsies and investigation of the possible role of BiP and Mdg1 in endothelial cells, focusing on thei…

research product

Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor

A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood-brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modif…

research product

Murine embryonic stem cell line CGR8 expresses all subtypes of muscarinic receptors and multiple nicotinic receptor subunits: Down-regulation of α4- and β4-subunits during early differentiation.

Non-neuronal acetylcholine mediates its cellular effects via stimulation of the G-protein-coupled muscarinic receptors and the ligand-gated ion channel nicotinic receptors. The murine embryonic stem cell line CGR8 synthesizes and releases non-neuronal acetylcholine. In the present study a systematic investigation of the expression of nicotinic receptor subunits and muscarinic receptors was performed, when the stem cells were grown in the presence or absence of LIF, as the latter condition induces early differentiation. CGR8 cells expressed multiple nicotinic receptor subtypes (α3, α4, α7, α9, α10, β1, β2, β3, β4, γ, δ, e) and muscarinic receptors (M1, M3, M4, M5); M2 was detected only in 2 …

research product

Honeybees produce millimolar concentrations of non-neuronal acetylcholine for breeding: possible adverse effects of neonicotinoids

The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4–8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and…

research product

Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration.

Intervertebral disc (IVD) degeneration is one of the main causes of low back pain. Current surgical treatments are complex and generally do not fully restore spine mobility. Development of injectable extracellular matrix-based hydrogels offers an opportunity for minimally invasive treatment of IVD degeneration. Here we analyze a specific formulation of collagen-low molecular weight hyaluronic acid (LMW HA) semi-interpenetrating network (semi-IPN) loaded with gelatin microspheres as a potential material for tissue engineering of the inner part of the IVD, the nucleus pulposus (NP). The material displayed a gel-like behavior, it was easily injectable as demonstrated by suitable tests and did …

research product

Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor

A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood–brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modif…

research product