0000000001314917

AUTHOR

T. Brohm

Few-neutron removal from238U at relativistic energies

As part of a comprehensive study of uranium fragmentation at relativistic energies at the GSI projectile fragment separator, FRS, inclusive neutron-removal cross sections have been measured for severalxn channels at projectile energies of 600 and 950A MeV using targets of Al, Cu and Pb. The variation of the experimental cross sections with target nuclear charge is used to disentangle nuclear and electromagnetic contributions. The electromagnetic cross sections agree surprisingly well with a simple harmonic oscillator calculation of giant dipole resonances based on measured photonuclear cross sections and do not require an extra enhancement of the two-phonon giant dipole excitation as conclu…

research product

First spatial isotopic separation of relativistic uranium projectile fragments

Abstract Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z = 92. This achievement has …

research product

"Table 2" of "Few neutron removal from U-238 at relativistic energies"

Uranium fragmentation.

research product

"Table 1" of "Few neutron removal from U-238 at relativistic energies"

Uranium fragmentation.

research product