0000000001317291

AUTHOR

Nadia Eberl

Ancient symbiosis confers desiccation resistance to stored grain pest beetles

AbstractMicrobial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, e.g. temperature and humidity. Here we report on an ancient (~400 Mya) clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated withgrain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and …

research product

Data from: Ancient symbiosis confers desiccation resistance to stored grain pest beetles

Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, e.g. temperature and humidity. Here we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly i…

research product