0000000001319095
AUTHOR
David G. Heckel
Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): Sequences, mapping and expression
Aminopeptidases N (APNs) are a class of ectoenzymes present in lepidopteran larvae midguts, involved in the Bacillus thuringiensis (Bt) toxins mode of action. In the present work, seven aminopeptidases have been cloned from the midgut of Ostrinia nubilalis, the major Lepidopteran corn pest in the temperate climates. Six sequences were identified as APNs because of the presence of the HEXXH(X)18E and GAMEN motifs, as well as the signal peptide and the GPI-anchor sequences. The remaining sequence did not contain the two cellular targeting signals, indicating it belonged to the puromycin-sensitive aminopeptidase (PSA) family. An in silico analysis allowed us to find orthologous sequences in Bo…
RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design.
International audience; Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involv…
Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis
Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth ( Plutella xylostella ) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a …
Burying beetles regulate the microbiome of carcasses and use it to transmit a core microbiota to their offspring
Necrophagous beetles utilize carrion, a highly nutritious resource that is susceptible to intense microbial competition, by treating it with antimicrobial anal and oral secretions. However, how this regulates the carcass microbiota remains unclear. Here, we show that carcasses prepared by the burying beetle Nicrophorus vespilloides undergo significant changes in their microbial communities subsequent to their burial and ‘preparation’. Prepared carcasses hosted a microbial community that was more similar to that of beetles’ anal and oral secretions than to the native carcass community or the surrounding soil, indicating that the beetles regulated the carcass microbiota. A core microbial comm…
Microbiome-assisted carrion preservation aids larval development in a burying beetle
Significance Ephemeral diets such as carrion are high-quality resources that are susceptible to microbial spoilage. Carrion-feeding insects that breed on decaying carcasses must overcome challenges arising from competing microbes. Here we report that a carrion-feeding burying beetle preserves carcasses by regulating its microbial growth, resulting in changes in its biochemical properties including the reduction of toxic polyamines associated with putrefaction and nutrient loss. The beetle’s microbial symbionts form a biofilm-like matrix on carcasses, which is important for optimal larval development. The beetles and their microbiome thus coordinate a specialized adaptive strategy of carrion…
Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis
Insecticidal proteins from the bacterium Bacillus thuringiensis ( Bt) are used in sprayable formulations or produced in transgenic crops as the most successful alternatives to synthetic pesticides. The most relevant threat to sustainability of Bt insecticidal proteins (toxins) is the evolution of resistance in target pests. To date, high-level resistance to Bt sprays has been limited to one species in the field and another in commercial greenhouses. In contrast, there are currently seven lepidopteran and one coleopteran species that have evolved practical resistance to transgenic plants producing insecticidal Bt proteins. In this article, we present a review of the current knowledge on mec…
Data from: Burying beetles regulate the microbiome of carcasses and use it to transmit a core microbiota to their offspring
Necrophagous beetles utilize carrion, a highly nutritious resource that is susceptible to intense microbial competition, by treating it with antimicrobial anal and oral secretions. However, how this regulates the carcass microbiota remains unclear. Here, we show that carcasses prepared by the burying beetle Nicrophorus vespilloides undergo significant changes in their microbial communities subsequent to their burial and ‘preparation’. Prepared carcasses hosted a microbial community that was more similar to that of beetles’ anal and oral secretions than to the native carcass community or the surrounding soil, indicating that the beetles regulated the carcass microbiota. A core microbial comm…