0000000001320187

AUTHOR

Lluis Guijarro

Ditopic Aza-Scorpiand Ligands Interact Selectively with ds-RNA and Modulate the Interaction upon Formation of Zn2+ Complexes

Nucleic acids are essential biomolecules in living systems and represent one of the main targets of chemists, biophysics, biologists, and nanotechnologists. New small molecules are continuously developed to target the duplex (ds) structure of DNA and, most recently, RNA to be used as therapeutics and/or biological tools. Stimuli-triggered systems can promote and hamper the interaction to biomolecules through external stimuli such as light and metal coordination. In this work, we report on the interaction with ds-DNA and ds-RNA of two aza-macrocycles able to coordinate Zn2+ metal ions and form binuclear complexes. The interaction of the aza-macrocycles and the Zn2+ metal complexes with duple…

research product

Synthesis, Optical Properties, and DNA Interaction of New Diquats Based on Triazolopyridines and Triazoloquinolines

New diquat derivatives based on [1,2,3]triazolo[1,5-a]pyridine and [1,2,3]triazolo[1,5-a]quinoline have been synthesized in excellent yields. To evaluate the effect of the alkyl bridge length, ethane and propane dibromo alkane substrates were used for their synthesis. Theoretical calculations predicted a very small energetic barrier between the two possible enantiomers P (Ra ) and M (Sa ), which makes them very difficult to resolve. Thermal denaturation studies, UV/Visible spectroscopy, and fluorescence titrations with ct-DNA evidenced the intercalation of the quinoline derivatives in DNA.

research product

Polyfunctional Tetraaza-Macrocyclic Ligands: Zn(II), Cu(II) Binding and Formation of Hybrid Materials with Multiwalled Carbon Nanotubes

The binding properties of HL1, HL2, and HL3 ligands toward Cu(II) and Zn(II) ions, constituted by tetraaza-macrocyclic rings decorated with pyrimidine pendants, were investigated by means of potentiometric and UV spectrophotometric measurements in aqueous solution, with the objective of using the related HL-M(II) (HL = HL1–HL3; M = Cu, Zn) complexes for the preparation of hybrid MWCNT-HL-M(II) materials based on multiwalled carbon nanotubes (MWCNTs), through an environmentally friendly noncovalent procedure. As shown by the crystal structure of [Cu(HL1)](ClO4)2, metal coordination takes place in the macrocyclic ring, whereas the pyrimidine residue remains available for attachment onto the s…

research product

Aryl-bis-(scorpiand)-aza receptors differentiate between nucleotide monophosphates by a combination of aromatic, hydrogen bond and electrostatic interactions.

Bis-polyaza pyridinophane scorpiands bind nucleotides in aqueous medium with 10–100 micromolar affinity, predominantly by electrostatic interactions between nucleotide phosphates and protonated aliphatic amines and assisted by aromatic stacking interactions. The pyridine-scorpiand receptor showed rare selectivity toward CMP with respect to other nucleotides, whereby two orders of magnitude affinity difference between CMP and UMP was the most appealing. The phenanthroline-scorpiand receptor revealed at pH 5 strong selectivity toward AMP with respect to other NMPs, based on the protonation of adenine heterocyclic N1. The results stress that the efficient recognition of small biomolecules with…

research product

A New Heterogeneous Catalyst Obtained via Supramolecular Decoration of Graphene with a Pd2+ Azamacrocyclic Complex

A new G-(H2L)-Pd heterogeneous catalyst has been prepared via a self-assembly process consisting in the spontaneous adsorption, in water at room temperature, of a macrocyclic H2L ligand on graphene (G) (G + H2L = G-(H2L)), followed by decoration of the macrocycle with Pd2+ ions (G-(H2L) + Pd2+ = G-(H2L)-Pd) under the same mild conditions. This supramolecular approach is a sustainable (green) procedure that preserves the special characteristics of graphene and furnishes an efficient catalyst for the Cu-free Sonogashira cross coupling reaction between iodobenzene and phenylacetylene. Indeed, G-(H2L)-Pd shows an excellent conversion (90%) of reactants into diphenylacetylene under mild conditio…

research product

Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives

Abstract Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-deriv…

research product

Binding Mode and Selectivity of a Scorpiand-Like Polyamine Ligand to Single- and Double-Stranded DNA and RNA: Metal- and pH-Driven Modulation

The interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA-polyU, poly(dAT)(2), and poly(dGC)(2) has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shif…

research product

Homo- and Heterobinuclear Cu2+ and Zn2+ Complexes of Ditopic Aza Scorpiand Ligands as Superoxide Dismutase Mimics

Two polytopic aza-scorpiand-like ligands, 6-[7-(diaminoethyl)-3,7-diazaheptyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L1) and 6-[6′-[3,6,9-triaza-1-(2,6-pyridina)cyclodecaphan-6-yl]-3-azahexyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L2), have been synthesized. The acid–base behavior and Cu2+, Zn2+, and Cu2+/Zn2+ mixed coordination have been analyzed by potentiometry, cyclic voltammetry, and UV–vis spectroscopy. The resolution of the crystal structures of [Cu2L2Cl2](ClO4)2·1.67H2O (1), [Cu2HL2Br2](ClO4)3·1.5H2O (2), and [CuZnL2Cl2](ClO4)2·1.64H2O (3) shows, in agreement with the solution data, the formation of homobinuclear Cu2+/Cu2+ and heterobinuclear Cu2+/Zn2+ complexes. The m…

research product

CCDC 1553257: Experimental Crystal Structure Determination

Related Article: Matteo Savastano, Paloma Arranz-Mascaros, ́Carla Bazzicalupi, Maria Paz Clares, Maria Luz Godino-Salido, Lluis Guijarro, Maria Dolores Gutierrez-Valero, ́Antonio Bianchi, Enrique García-España, Rafael Lopez-Garzon|2017|ACS Omega|2|3868|doi:10.1021/acsomega.7b00736

research product