0000000001332373

AUTHOR

Rosaria Bonito

showing 69 related works from this author

The Gaia-ESO Survey: The origin and evolution of s-process elements

2018

Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO IDR5 results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the ave…

astro-ph.GAMetallicityFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: diskAstronomi astrofysik och kosmologiAbundance (ecology)QB4600103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar AstrophysicsDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsgeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsOpen clusters and associations: generalAstrophysics - Astrophysics of GalaxiesStarsAbundances [Galaxy][SDU]Sciences of the Universe [physics]13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy: abundancesAstrophysics::Earth and Planetary AstrophysicsDisk [Galaxy]s-processOpen cluster
researchProduct

Empirical determination of Einstein A-coefficient ratios of bright [Fe II] lines

2014

The Einstein spontaneous rates (A-coefficients) of Fe+ lines have been computed by several authors with results that differ from each other by up to 40%. Consequently, models for line emissivities suffer from uncertainties that in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines that would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-Very Large Telescope X-shooter instrument between 3000 Å and 24700 Å, we obtained a spectrum of the bright Herbig-Haro object HH 1. …

PhysicsISM: individual objects (HH1)Extinction (astronomy)Hartree–Fock methodFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstronomy and AstrophysicISM: lines and bandCharged particleISM: atomAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceEmissivityAstrophysics::Solar and Stellar AstrophysicsHerbig–Haro objectAtomic dataHerbig-Haro objectExcitationSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsDimensionless quantityLine (formation)
researchProduct

Gaia-ESO Survey: Gas dynamics in the Carina nebula through optical emission lines

2016

Aims. We present observations from the Gaia-ESO Survey in the lines of Hα, [N II], [S II], and He I of nebular emission in the central part of the Carina nebula. Methods. We investigate the properties of the two already known kinematic components (approaching and receding), which account for the bulk of emission. Moreover, we investigate the features of the much less known low-intensity high-velocity (absolute RV >50 km s) gas emission. Results. We show that gas giving rise to Hα and He I emission is dynamically well correlated with but not identical to gas seen through forbidden-line emission. Gas temperatures are derived from line-width ratios, and densities from [S II] doublet ratios. Th…

HII regionsastro-ph.SRastro-ph.GAAstrophysics::High Energy Astrophysical PhenomenaShell (structure)FluxFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesISM: individual objects: Carina nebula; ISM: general ; HII regionsIonization0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsHII regionEmission spectrum010303 astronomy & astrophysicsISM: individual objects: Carina nebulaQCSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsQBISM: generalAstronomía y AstrofísicaPhysicsNebulageneral [ISM]010308 nuclear & particles physicsindividual objects: Carina nebula [ISM]Astronomy and AstrophysicsGas dynamicsAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesDust laneCore (optical fiber)Astrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)HII regions; ISM: general; ISM: individual objects: Carina nebula; Astronomy and Astrophysics; Space and Planetary Science
researchProduct

Generation of radiative knots in a randomly pulsed protostellar jet

2009

HH objects are characterized by a complex knotty morphology detected mainly along the axis of protostellar jets in a wide range of bands. Evidence of interactions between knots formed in different epochs have been found, suggesting that jets may result from the ejection of plasma blobs from the source. We aim at investigating the physical mechanism leading to the irregular knotty structure observed in jets in different bands and the complex interactions occurring among blobs of plasma ejected from the stellar source. We perform 2D axisymmetric HD simulations of a randomly ejected pulsed jet. The jet consists of a train of blobs which ram with supersonic speed into the ambient medium. The in…

PhysicsJet (fluid)Proper motionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasmaThermal conductionAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceReflection (physics)Radiative transferOblique shockSupersonic speedhydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISMSolar and Stellar Astrophysics (astro-ph.SR)Astronomy and Astrophysics
researchProduct

AE Aurigae: First detection of non-thermal X-ray emission from a bow shock produced by a runaway star

2012

Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405…

Shock waveAstrofísicaCiencias Astronómicasstars: kinematics and dynamicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalISM: cloudsmassive [stars]general [X-rays]Radiative transferISM: clouds radiation mechanisms: non-thermal stars: individual: AE Aur stars: kinematics and dynamics stars: massive X-rays: generalAstrophysics::Solar and Stellar AstrophysicsBow shock (aerodynamics)kinematics and dynamics [stars]Solar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsCosmic dustPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)NebulaAstronomy and Astrophysicsradiation mechanisms: non-thermalnon-thermal [radiation mechanisms]Astrophysics - Astrophysics of GalaxiesInterstellar mediumAstronomíastars: individual (AE Aur)stars: massiveStarsindividual (AE Aur) [stars]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaclouds [ISM]Radio wave
researchProduct

The X-ray emission mechanism in the protostellar jet HH 154

2004

We study the mechanism causing the X-ray emission recently detected in protostellar jets, by performing a detailed modeling of the interaction between a supersonic jet originating from a young stellar object and the ambient medium, for various values of density contrast, ν, between the ambient density and the jet, and of Mach number, M; radiative losses and thermal conduction have been taken into account. Here we report a representative case which reproduces, without any ad hoc assumption, the characteristics of the X-ray emission recently observed in the protostellar jet HH 154. We find that the X-ray emission originates from a localized blob, consistent with observations, which moves with…

PhysicsJet (fluid)Proper motionAstrophysics::High Energy Astrophysical PhenomenaYoung stellar objectAstronomy and AstrophysicsAstrophysicsThermal conductionISM: Herbig-Haro objects ISM: individual objects: HH 154 ISM: jets and outflows X-rays: ISMSpace and Planetary ScienceRadiative transferSupersonic speedHerbig–Haro objectDensity contrastAstrophysics::Galaxy Astrophysics
researchProduct

The diagnostic potential of Fe lines applied to protostellar jets

2013

We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-H\alpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivi…

PhysicsJet (fluid)Range (particle radiation)ISM: individual objects: ESO-Hα 574 Par-Lup 3-4 ISM: jets and outflows ISM: lines and bands stars: pre-main sequenceFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesSpectral lineStarsindividual objects: ESO-Hα 574 Par-Lup 3-4 ISM: jets and outflows ISM: lines and bands stars: pre-main sequence [ISM]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceIonizationAstrophysics of Galaxies (astro-ph.GA)EmissivityElectron temperatureAtomic physicsExcitationSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field

2014

International audience; Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recentl…

jetsPhysicsJet (fluid)MultidisciplinaryShock (fluid dynamics)Young stellar objectAstrophysics::High Energy Astrophysical PhenomenaFlow (psychology)PlasmaConical surfaceAstrophysics01 natural sciencesSIMULATIONS010305 fluids & plasmasMagnetic fieldCOLLIMATION[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con]DISCOVERY0103 physical sciencesDG-TAURI010303 astronomy & astrophysicsACCRETION DISCSAstrophysics::Galaxy AstrophysicsDRIVEN JETS
researchProduct

X-rays from protostellar jets: emission from continuous flows

2006

Recently X-ray emission from protostellar jets has been detected with both XMM-Newton and Chandra satellites, but the physical mechanism which can give rise to this emission is still unclear. We performed an extensive exploration of a wide space of the main parameters influencing the jet/ambient interaction. Aims include: 1) to constrain the jet/ambient interaction regimes leading to the X-ray emission observed in Herbig-Haro objects in terms of the emission by a shock forming at the interaction front between a continuous supersonic jet and the surrounding medium; 2) to derive detailed predictions to be compared with optical and X-ray observations of protostellar jets; 3) to get insight int…

PhysicsJet (fluid)Proper motionShock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsSpace (mathematics)Thermal conductionSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceRadiative transferHerbig-Haro objects ISM: jets and outflows X-rays: ISM [shock waves ISM]Astrophysics::Solar and Stellar AstrophysicsSupersonic speedCylindrical coordinate systemshock waves ISM: Herbig-Haro objects ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

2013

(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthX-rays: starsAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)pre-main sequence X-rays: stars [accretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars]010305 fluids & plasmasSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsPlasmashock wavesAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesPhysics::Space PhysicsOblique shockAstrophysics::Earth and Planetary Astrophysicsaccretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars: pre-main sequence X-rays: stars[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

High Energy Emission from Shocks Due to Jets and Accretion in Young Stars with Disks: Combining Observations, Numerical Models, and Laboratory Experi…

2018

High energy emission from young stars with disks, with all their components due to accretion and outflow activity, can have a deep impact on the evolution of their disks and on the formation of exo-planetary systems. An inter-disciplinary approach, which combines multi-wavelength observations, magnetohydrodynamical models, and laboratory experiments, allows us to get a more complete description of the accretion/ejection phenomena characterizing young stars. We discuss the case of the HH 154 jet, its X-ray emission localized at the base of the jet and its complex morphology, comparing observations, models, and laser experiments. We present the comparison between magnetohydrodynamical models …

PhysicsHigh energyAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsNumerical modelsAstrophysicsLaserAccretion (astrophysics)law.inventionTelescopesymbols.namesakeStarslawsymbolsAstrophysics::Solar and Stellar AstrophysicsOutflowAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Doppler effectAstrophysics::Galaxy Astrophysics
researchProduct

The Gaia-ESO Survey: Dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

2017

Aims. We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods. We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet …

HII regionsStellar populationAstrophysics::High Energy Astrophysical PhenomenaDoubly ionized oxygenFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energy0103 physical sciencesProtostarAstrophysics::Solar and Stellar AstrophysicsHII region010303 astronomy & astrophysicsISM: individual objects: Lagoon nebulaSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsO-type starISM: generalPhysicsNebulageneral [ISM]010308 nuclear & particles physicsMolecular cloudHII regions; ISM: general; ISM: individual objects: Lagoon nebula; Astronomy and Astrophysics; Space and Planetary ScienceAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxiesindividual objects: Lagoon nebula [ISM]StarsStar clusterAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary Astrophysics
researchProduct

X-ray emission from stellar jets by collision against high-density molecular clouds: an application to HH 248

2015

We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts against a dense molecular cloud. This scenario may be usual for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud by 2D axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig-Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10 MK, consistent with producti…

AstrofísicaHERBIGHARO OBJECTSJETS AND OUTFLOWS [ISM]Astrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesCloud computingAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsISM [X-RAYS]Space (mathematics)LuminosityHYDRODYNAMICS//purl.org/becyt/ford/1 [https]INDIVIDUAL OBJECTS (HH 248) [ISM]hydrodynamics Herbig-Haro objects ISM: individual objects: HH 248 ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsJet (fluid)business.industryMolecular cloudAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]PlasmaAstronomíaT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceHerbig–Haro objectsbusiness
researchProduct

Laboratory evidence for asymmetric accretion structure upon slanted matter impact in young stars

2020

Aims. Investigating the process of matter accretion onto forming stars through scaled experiments in the laboratory is important in order to better understand star and planetary system formation and evolution. Such experiments can indeed complement observations by providing access to the processes with spatial and temporal resolution. A previous investigation revealed the existence of a two-component stream: a hot shell surrounding a cooler inner stream. The shell was formed by matter laterally ejected upon impact and refocused by the local magnetic field. That laboratory investigation was limited to normal incidence impacts. However, in young stellar objects, the complex structure of magne…

Shock wavestarsAccretionMagnetohydrodynamics (MHD)Young stellar objectFOS: Physical sciencesX-rays: starsAstrophysics01 natural sciencesShock wavesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsEjecta010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicspre-main sequence -X-raysAstronomy and AstrophysicsPlasmaPlanetary system[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]accretion disks -instabilities -magnetohydrodynamics (MHD) -shock waves -starsAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceInstabilitiesAccretion disksStars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Gaia -ESO Survey: Analysis of pre-main sequence stellar spectra

2015

This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategi…

Accuracy and precisionPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequenceSurveysfundamental parameters [Stars]Astronomical spectroscopysurveysAngular diameterpre-main sequence [Stars]Astrophysics::Solar and Stellar AstrophysicsSurveydata analysis [Methods]educationSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomía y AstrofísicaPhysicseducation.field_of_studygeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Astronomy and AstrophysicsStars: fundamental parameterAstronomy and AstrophysicEffective temperatureopen clusters and associations: generalSurface gravitymethods: data analysisAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsMethods: data analysis; Open clusters and associations: general; Stars: fundamental parameters; Stars: pre-main sequence; Surveys; Astronomy and Astrophysics; Space and Planetary ScienceSpace and Planetary Science[SDU]Sciences of the Universe [physics]open clusters and associations: general; surveys ; methods: data analysisAstrophysics::Earth and Planetary Astrophysicsstars: fundamental parametersMethods: data analysi
researchProduct

Generation of radiative knots in a randomly pulsed protostellar jet. II. X-ray emission

2010

Protostellar jets are known to emit in a wide range of bands, from radio to IR to optical bands, and to date also about ten X-ray emitting jets have been detected, with a rate of discovery of about one per year. We aim at investigating the mechanism leading to the X-ray emission detected in protostellar jets and at constraining the physical parameters that describe the jet/ambient interaction by comparing our model predictions with observations. We perform 2D axisymmetric hydrodynamic simulations of the interaction between a supersonic jet and the ambient. The jet is described as a train of plasma blobs randomly ejected by the stellar source along the jet axis. We explore the parameter spac…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsPlasmaParameter spaceX-rays: ISMLuminosityAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceRadiative transferHerbig–Haro objectDensity contrastHerbig-Haro objectISM: jets and outflowSolar and Stellar Astrophysics (astro-ph.SR)hydrodynamic
researchProduct

The Complex Morphology of the X-ray and Optical Emission from HH 154: The Pulsed Jet Scenario

2009

We study the optical and X-ray emission from protostellar jets, focusing, in particular, on the case of HH 154. This project consists of two different and complementary approaches: the development of hydrodynamical models of the jet/ambient interaction, and the analysis of multi-wavelength observations. Comparing the results derived from the simulations with the observations we can infer the physical mechanisms leading to the complex morphology of the X-rays source observed at the base of HH 154.

PhysicsJet (fluid)Morphology (linguistics)Proper motionAstrophysics::High Energy Astrophysical PhenomenaX-rayAstrophysicsOptical emission spectroscopyhydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

Modeling the shock-cloud interaction in SN 1006: unveiling the origin of nonthermal X-ray and gamma-ray emission

2016

The supernova remnant SN 1006 is a source of high-energy particles and its southwestern limb is interacting with a dense ambient cloud, thus being a promising region for gamma-ray hadronic emission. We aim at describing the physics and the nonthermal emission associated with the shock-cloud interaction to derive the physical parameters of the cloud (poorly constrained by the data analysis), to ascertain the origin of the observed spatial variations in the spectral properties of the X-ray synchrotron emission, and to predict spectral and morphological features of the resulting gamma-ray emission. We performed 3-D magnetohydrodynamic simulations modeling the evolution of SN 1006 and its inter…

AstrofísicaProper motionMagnetohydrodynamics (MHD)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesContext (language use)AstrophysicsISM: individual objects: SN 100601 natural sciencesISM: cloudslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawISM: cloud0103 physical sciencesMagnetohydrodynamic driveSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysicsacceleration of particlesISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsclouds; ISM: individual objects: SN 1006; ISM: supernova remnants; Magnetohydrodynamics (MHD); X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [Acceleration of particles; ISM]X-rayAstronomy and AstrophysicsAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISMShock (mechanics)Astronomía13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Formation of X-ray emitting stationary shocks in magnetized protostellar jets

2016

X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. We aim at investigating the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets, the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks, and the physical properties of the shocked plasma. We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations modelling supersonic jets ramming into a magnetized medium and explored different configurations…

AstrofísicaMagnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesRadiative coolingAstrophysics::High Energy Astrophysical PhenomenaISM: structureFOS: Physical sciencesAstrophysics01 natural sciencesISM: magnetic field0103 physical sciencesShock diamondRadiative transfer010303 astronomy & astrophysicsISM: jets and outflowSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)Astronomy and AstrophysicsPlasmaAstronomy and AstrophysicThermal conductionX-rays: ISMShock (mechanics)Magnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceStars: protostarAstrophysics - High Energy Astrophysical Phenomena
researchProduct

An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects

2011

We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic…

PhysicsYoung stellar objectBrown dwarfAstronomyAstronomy and AstrophysicsAstrophysicsAccretion (astrophysics)Spectral lineT Tauri starStarsaccretion accretion disks ISM: jets and outflows stars: formation stars: low-mass brown dwarfs stars: pre-main sequence T Tauri starsSpace and Planetary ScienceOutflowLow Massjets and outflows stars: formation stars: low-mass brown dwarfs stars: pre-main sequence T Tauri stars [accretion accretion disks ISM]
researchProduct

Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

2014

Accretion processes onto classical T Tauri stars (CTTSs) are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The m…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsQC1-999X-rayAstronomyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAccretion (astrophysics)T Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamicsaccretion shocksAstrophysics::Galaxy Astrophysics
researchProduct

Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field

2021

The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun’s outflows to extragalatic jets. Furthermore, they provide…

ScienceAstrophysics::High Energy Astrophysical PhenomenaNozzleoutflows magnetohydrodynamics(MHD) shockwaves astrophysical jetsGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCollimated lightSettore FIS/05 - Astronomia E AstrofisicaAmbient field0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressure010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsLaboratory astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)MultidisciplinaryQLaser-produced plasmasGeneral ChemistryPhysics - Plasma PhysicsMagnetic fieldPlasma Physics (physics.plasm-ph)Astrophysics - Solar and Stellar AstrophysicsPhysics::Accelerator PhysicsOutflowHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

X-rays from accretion shocks in classical T Tauri stars: 2D MHD modeling and the role of local absorption

2013

AbstractIn classical T Tauri stars (CTTS) strong shocks are formed where the accretion funnel impacts with the denser stellar chromosphere. Although current models of accretion provide a plausible global picture of this process, some fundamental aspects are still unclear: the observed X-ray luminosity in accretion shocks is order of magnitudes lower than predicted; the observed density and temperature structures of the hot post-shock region are puzzling and still unexplained by models.To address these issues we performed 2D MHD simulations describing an accretion stream impacting onto the chromosphere of a CTTS, exploring different configurations and strengths of the magnetic field. From th…

Accretion MHD Stars: pre-main sequence X-rays: starsPhysicsbusiness.product_categoryAstronomyAstronomy and AstrophysicsAstrophysicsViewing angleAccretion (astrophysics)Spectral lineMagnetic fieldT Tauri starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Sciencepre-main sequence X-rays: stars [Accretion MHD Stars]FunnelMagnetohydrodynamicsbusinessChromosphereProceedings of the International Astronomical Union
researchProduct

The discovery of an expanding X-ray source in the HH 154 protostellar jet

2006

We have performed, in October 2005, a deep Chandra X-ray observation of HH 154. Comparison with the previous (2001) Chandra observation allows to detect proper motion down to the level predicted by models of X-ray emitting shocks in the jet. The 2005 Chandra observation of HH 154 shows unexpected morphological changes of the X-ray emission in comparison with the 2001 data. Two components are present: a stronger, point-like component with no detectable motion and a weaker component which has expanded in size by approximately 300 AU over the 4 years time base of the two observations. This expansion corresponds to approximately 500 km/s, very close to the velocity of the X-ray emitting shock i…

PhysicsJet (fluid)Proper motionShock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)X-rayTheoretical modelsFOS: Physical sciencesAstronomy and AstrophysicsMedium densityAstrophysicsAstrophysicsL1551-IRS-5Space and Planetary ScienceEMISSIONAstronomy & Astrophysics
researchProduct

Mass Accretion Impacts in Classical T Tauri Stars: A Multi-disciplinary Approach

2019

Accretion of matter is a process that plays a central role in the physics of young stellar objects. The analysis of the structure by which matter settles on the star can unveil key information about the process of star formation by providing details on mass accretion rates, stellar magnetic field configurations, possible effects of accretion on the stellar coronal activity, etc. Here we review some of the achievements obtained by our group by exploiting a multi-disciplinary approach based on the analysis of multi-dimensional magnetohydrodynamic simulations, multi-wavelength observations, and laboratory experiments of accretion impacts occurring onto the surface of classical T Tauri stars (C…

PhysicsMulti disciplinaryStar formationYoung stellar objectAccretion young stellar objects Magnetohydrodynamics observationsStellar magnetic fieldAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsStar (graph theory)Accretion (astrophysics)T Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

The nearest X-ray emitting protostellar jet (HH 154) observed with Hubble

2008

Context. The jet coming from the YSO binary L1551 IRS5 is the closest astrophysical jet known. It is therefore a unique laboratory for studies of outflow mechanisms and of the shocks occurring when expanding material hits the ambient medium as well as of how the related processes influence the star- (and planet-) forming process. Aims. The optical data are related to other data covering the spectrum from the optical band to X-rays with goal of understanding the energetics of low-mass star jets, in general, and of this jet in particular. We study the time evolution of the jet, by measuring the proper motions of knots as they progress outwards from the originating source. Methods. The nebulos…

Shock wavePhysicsJet (fluid)Proper motionShock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaYoung stellar objectAstronomyAstronomy and AstrophysicsContext (language use)AstrophysicsAstrophysical jetSpace and Planetary ScienceHerbig–Haro objectshock waves ISM: Herbig-Haro objects ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

2017

High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift…

AccretionTechniques: spectroscopicFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesTW HydraeX-rays: starEmission spectrumSpectroscopy010303 astronomy & astrophysicsStars: variables: T TauriSolar and Stellar Astrophysics (astro-ph.SR)PhysicsPhotosphereLine-of-sight010308 nuclear & particles physicsHerbig Ae/BeAstronomy and AstrophysicsAstronomy and AstrophysicRedshiftAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsAccretion diskSpace and Planetary ScienceStars: pre-main sequence
researchProduct

Pre-main sequence stars older than 8 Myr in the Eagle Nebula

2013

Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle Nebula that have prominent near-infrared (NIR) excess and optical colours typical of pre-main sequence (PMS) stars older than 8 Myr. At least half of those for which spectroscopy exists have a Halpha emission line profile revealing active accretion. In principle, the V-I colours of all these stars would be consistent with those of young PMS objects (< 1 Myr) whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only …

PhysicsNebulaeducation.field_of_studyAstrophysics::High Energy Astrophysical PhenomenaPopulationmyrAstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceMagnitude (astronomy)Astrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Earth and Planetary AstrophysicseducationMain sequenceAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

A stellar flare-coronal mass ejection event revealed by X-ray plasma motions

2019

Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments are predicted to be significant. However, stellar CMEs remain observationally unexplored. Using time-resolved high-resolution X-ray spectroscopy of a stellar flare on the active star HR 9024 observed with Chandra/HETGS, we distinctly detected Doppler shifts in S XVI, Si XIV, and Mg XII lines that indicate upward and downward motions of hot plasmas (~10-25 MK) within the flaring loop, with velocity v~100-400 km/s, in agreement with a model of fl…

Angular momentumX-ray Astronomy010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaStars: flareFOS: Physical sciencesAstrophysicsKinetic energy01 natural scienceslaw.inventionSpitzer Space Telescopelaw0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsStars: coronae010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsStarsAstrophysics - Solar and Stellar AstrophysicsStellar physicsPhysics::Space PhysicsStars: CMEAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFlare
researchProduct

New view of the corona of classical T Tauri stars: Effects of flaring activity in circumstellar disks

2019

Classical T Tauri stars (CTTSs) are young low-mass stellar objects accreting mass from their circumstellar disks. They are characterized by high levels of coronal activity as revealed by X-ray observations. This activity may affect the disk stability and the circumstellar environment. Here we investigate if an intense coronal activity due to flares occurring close to the accretion disk may perturb the inner disk stability, disrupt the inner part of the disk and, possibly, trigger accretion phenomena with rates comparable with those observed. We model a magnetized protostar surrounded by an accretion disk through 3D magnetohydrodinamic simulations. We explore cases characterized by a dipole …

Young stellar objectStars: flareAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsaccretion accretion disk01 natural sciencesmagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferProtostarAstrophysics::Solar and Stellar AstrophysicsStars: coronae010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]accretion disksStellar magnetic fieldAstronomy and Astrophysics[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]CoronaAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsHeat flux13. Climate actionSpace and Planetary ScienceStars: pre-main sequenceAstrophysics::Earth and Planetary Astrophysics
researchProduct

Accretion-ejection connection in the young brown dwarf candidate ISO-ChaI 217*

2014

As the number of observed brown dwarf outflows is growing it is important to investigate how these outflows compare to the well-studied jets from young stellar objects. A key point of comparison is the relationship between outflow and accretion activity and in particular the ratio between the mass outflow and accretion rates (Ṁout/Ṁacc). The brown dwarf candidate ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric study of brown dwarfs, to be driving an asymmetric outflow with the blue-shifted lobe having a position angle of ~20°. The aim here is to further investigate the properties of ISO-ChaI 217, the morphology and kinematics of its outflow, and to better constrai…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaYoung stellar objectBrown dwarfAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsPosition angleAccretion (astrophysics)Key pointAccretion discSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsOutflowAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Hydrodynamic Modeling of Accretion Impacts in Classical T Tauri Stars: Radiative Heating of the Pre-shock Plasma

2016

Context. It is generally accepted that, in classical T Tauri stars, the plasma from the circumstellar disc accretes onto the stellar surface with free-fall velocity and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims: We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream, with the aim to identify in which region a …

Shock waveRadiative coolingAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAccretion accretion diskSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsX-rays: starIrradiationEmission spectrum010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsAstronomy and AstrophysicsHydrodynamicPlasmaAstronomy and AstrophysicThermal conductionAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsShock waveSpace and Planetary ScienceStars: pre-main sequenceAstrophysics::Earth and Planetary Astrophysics
researchProduct

Magnetohydrodynamic Modeling of the Accretion Shocks in Classical T Tauri Stars: The Role of Local Absorption in the X-Ray Emission

2014

We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium …

PhysicsShock wave[PHYS]Physics [physics]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and Astrophysicsaccretion accretion disks magnetohydrodynamics: MHD shock waves stars: pre-main sequence X-rays: starsAstrophysicsPlasmaAstrophysics::Cosmology and Extragalactic AstrophysicsAccretion (astrophysics)Spectral lineLuminosityT Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAbsorption (electromagnetic radiation)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ChromosphereSolar and Stellar Astrophysics (astro-ph.SR)ComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy Astrophysics
researchProduct

The Gaia-ESO survey: Discovery of a spatially extended low-mass population in the Vela OB2 association

2015

The nearby (distance~350-400 pc), rich Vela OB2 association, includes $\gamma^2$ Velorum, one of the most massive binaries in the solar neighbourhood and an excellent laboratory for investigating the formation and early evolution of young clusters. Recent Gaia-ESO survey observations have led to the discovery of two kinematically distinct populations in the young (10-15 Myr) cluster immediately surrounding $\gamma^2$ Velorum. Here we analyse the results of Gaia-ESO survey observations of NGC 2547, a 35 Myr cluster located two degrees south of $\gamma^2$ Velorum. The radial velocity distribution of lithium-rich pre-main sequence stars shows a secondary population that is kinematically distin…

Stellar populationStars: Individual: Gamma2 velorumPopulationFOS: Physical sciencesTechniques: SpectroscopicAstrophysicsVela01 natural sciencesOpen clusters and associations: Individual: NGC 25470103 physical sciencesCluster (physics)educationStars: Pre-main sequence010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QBOpen clusters and associations: Individual: Vela OB2Physicseducation.field_of_study010308 nuclear & particles physicsAstronomy and Astrophysicsstars: formation; stars: pre-main sequence; techniques: spectroscopicAstronomy and AstrophysicRadial velocityStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceStars: FormationLow MassOpen clusters and associations: Individual: NGC 2547; Open clusters and associations: Individual: Vela OB2; Stars: Formation; Stars: Individual: Gamma2 velorum; Stars: Pre-main sequence; Techniques: Spectroscopic; Astronomy and Astrophysics; Space and Planetary Science
researchProduct

Numerical Simulations and Diagnostics in Astrophysics: A few Magnetohydrodynamics Examples

2007

We discuss some issues related to numerical simulations in Astrophysics and, in particular, to their use both as a theoretical tool and as a diagnostic tool, to gain insight into the physical phenomena at work. We make our point presenting some examples of Magneto-hydro-dynamic (MHD) simulations of astrophysical plasmas and illustrating their use. In particular we show the need for appropriate tools to interpret, visualize and present results in an adequate form, and the importance of spectral synthesis for a direct comparison with observations.

PhysicsWork (thermodynamics)Physical phenomenadiagnosticmodelingPoint (geometry)AstrophysicsMagnetohydrodynamicsMagneto-Hydro-DynamicAstrophysics
researchProduct

3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects

2013

AbstractThe structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas …

PhysicsShock waveAccretion (meteorology)Shock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaFluxAstronomy and AstrophysicsAstrophysicsshock waves[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]magnetohydrodynamics (MHD)Magnetic fieldSettore FIS/05 - Astronomia E AstrofisicaaccretionSpace and Planetary Scienceradiative transferinstabilitiesaccretion magnetohydrodynamics (MHD) radiative transfer shock waves instabilitiesRadiative transferAstrophysics::Solar and Stellar AstrophysicsMagnetic pressureChromosphereAstrophysics::Galaxy Astrophysics
researchProduct

Structure of X-ray emitting jets close to the launching site: from embedded to disk-bearing sources

2018

Several observations of stellar jets show evidence of X-ray emitting shocks close to the launching site. In some cases, the shocked features appear to be stationary, also for YSOs at different stages of evolution. We study the case of HH 154, the jet originating from the embedded binary Class 0/I protostar IRS 5, and the case of the jet associated to DG Tau, a more evolved Class II disk-bearing source or Classical T Tauri star (CTTS), both located in the Taurus star-forming region. We aim at investigating the effect of perturbations in X-ray emitting stationary shocks in stellar jets; the stability and detectability in X-rays of these shocks; and explore the differences in jets from Class 0…

PhysicsJet (fluid)010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaYoung stellar objectFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsParameter space01 natural sciencesLuminosityShock (mechanics)T Tauri starAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Science0103 physical sciencesProtostar010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

Effects of radiation in accretion regions of classical T Tauri stars

2019

Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns, in which optically thin and thick plasma components coexist. Thus an accurate description of these impacts requires to account for the effects of absorption and emission of radiation. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock downfalling material. We investigate if a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. We developed a radiation hydrodynamics model describing an accretion column impacting onto the su…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)X-rays: starsAstrophysicsradiation: dynamics01 natural sciencesaccretion0103 physical sciencesThermalRadiative transferAstrophysics::Solar and Stellar Astrophysics010306 general physicsAbsorption (electromagnetic radiation)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsultraviolet: starsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsstars: variables: T Tauristars: formationaccretion disksHerbig Ae/BeAstronomy and AstrophysicsPlasmaThermal conductionAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

On the Origin of the X-Ray Emission in Protostellar Jets Close to the Launching Site

2019

Observations of stellar jets show evidence of X-ray emitting shocks close to the launching site. In some cases, the shocked features appear to be stationary (e.g. HH 154 and DG Tau). We aim at investigating the origin of X-ray emission and the effect of perturbations in X-ray emitting stationary shocks in stellar jets. We performed a set of 2.5-dimensional MHD numerical simulations modelling supersonic pulsed jets ramming into a magnetized medium, exploring different parameters for the model. We consider two cases: a jet less dense than the ambient medium (HH 154), and a jet denser than the ambient (DG Tau). In both cases, we found that the jet is collimated by the magnetic field forming a …

PhysicsJet (fluid)Shock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaX-raySupersonic speedAstrophysicsMagnetohydrodynamicsAstrophysics::Galaxy AstrophysicsCollimated lightMagnetic field
researchProduct

X-RAY EMISSION FROM PROTOSTELLAR JET HH 154: THE FIRST EVIDENCE OF A DIAMOND SHOCK?

2011

X-ray emission from about ten protostellar jets has been discovered and it appears as a feature common to the most energetic jets. Although X-ray emission seems to originate from shocks internal to jets, the mechanism forming these shocks remains controversial. One of the best studied X-ray jet is HH 154 that has been observed by Chandra over a time base of about 10 years. We analyze the Chandra observations of HH 154 by investigating the evolution of its X-ray source. We show that the X-ray emission consists of a bright stationary component and a faint elongated component. We interpret the observations by developing a hydrodynamic model describing a protostellar jet originating from a nozz…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaNozzleFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsThermal conductionjets and outflows X-rays: ISM [hydrodynamics Herbig-Haro objects ISM]LuminosityShock (mechanics)Starshydrodynamics Herbig-Haro objects ISM: jets and outflows X-rays: ISMAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceRadiative transferHerbig–Haro objectSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

The Gaia-ESO Survey: Catalogue of Hα emission stars

2015

We discuss the properties of Hα emission stars across the sample of 22035 spectra from the Gaia-ESO Survey internal data release, observed with the GIRAFFE instrument and largely belonging to stars in young open clusters. Automated fits using two independent Gaussian profiles and a third component that accounts for the nebular emission allow us to discern distinct morphological types of Hα line profiles with the introduction of a simplified classification scheme. All in all, we find 3765 stars with intrinsic emission and sort their spectra into eight distinct morphological categories: single-component emission, emission blend, sharp emission peaks, double emission, P-Cygni, inverted P-Cygni…

PhysicscatalogStars: emission-line BeStar formationAstrophysics::High Energy Astrophysical PhenomenaSIMBADstars: peculiarAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsopen clusters and associations: generalAstronomy and AstrophysicSpectral lineStarsline: profile13. Climate actionSpace and Planetary ScienceStellar physicsstars: activityAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsOpen clusterLine (formation)
researchProduct

The Gaia-ESO survey: Metallicity of the chamaeleon i star-forming region

2014

Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star-forming region, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. 48 candidate member…

AstrofísicaStars: abundanceMetallicityFOS: Physical sciencesTechniques: spectroscopicContext (language use)AstrophysicsOpen clusters and associations: individual: Chamaeleon ISolar and Stellar Astrophysics (astro-ph.SR)Line (formation)Physics85A04open clusters and associations: individual: Chamaeleon I stars: pre-main sequence stars: abundances techniques: spectroscopicStars: abundancesAstronomy and AstrophysicsSurface gravityAstronomíaStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceChamaeleonStars: pre-main sequenceOpen clusters and associations: individual: Chamaeleon I; Stars: abundances; Stars: pre-main sequence; Techniques: spectroscopicindividual: Chamaeleon I stars: pre-main sequence stars: abundances techniques: spectroscopic [open clusters and associations]Equivalent widthOpen cluster
researchProduct

Spectroscopic observations of blue stars with infrared excesses in NGC 6611

2013

The young open cluster NGC 6611 includes among its candidate members a class of peculiar objects with interesting properties: blue stars with infrared IR excesses. These stars show excesses in IR bands, signature of the presence of a circumstellar disk, but optical colors typical of older field stars. In order to confirm their membership to the cluster, it is therefore important to use new spectroscopic observations, together with previous photometric data. We aim at confirming the membership of these objects and at investigating their physical properties to verify whether the observed colors are intrinsic or altered by the presence of the disk or by the accretion processes. We analyze the …

PhysicsInfraredAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAccretion (astrophysics)Spectral linestars: formation stars: pre-main sequence accretion accretion disksRadial velocityStarsSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar Astrophysicsformation stars: pre-main sequence accretion accretion disks [stars]Space and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Open cluster
researchProduct

The gaia-eso survey: dynamical analysis of the l1688 region in ophiuchus

2016

The Gaia ESO Public Spectroscopic Survey (GES) is providing the astronomical community with high-precision measurements of many stellar parameters including radial velocities (RVs) of stars belonging to several young clusters and star-forming regions. One of the main goals of the young cluster observations is to study of their dynamical evolution and provide insight into their future, revealing if they will eventually disperse to populate the field, rather than evolve into bound open clusters. In this paper we report the analysis of the dynamical state of L1688 in the $\rho$~Ophiuchi molecular cloud using the dataset provided by the GES consortium. We performed the membership selection of t…

Stars: formationPopulationFOS: Physical sciencesAstrophysics01 natural sciencesVirial theoremstars: pre-main sequence / open clusters and associations: individual: L1688 / stars: kinematics and dynamics / stars: formation0103 physical scienceseducation010303 astronomy & astrophysicsQCOpen clusters and associations: individual: L1688Solar and Stellar Astrophysics (astro-ph.SR)QBPhysicseducation.field_of_study010308 nuclear & particles physicsStar formationMolecular cloudVelocity dispersionAstronomy and AstrophysicsStars: kinematics and dynamicAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)OphiuchusStars: pre-main sequenceOpen clusterAstronomy and Astrophysics
researchProduct

EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

2013

Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s -1, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separate…

AstrofísicaCiencias AstronómicasCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsIndividual: Iras 18162-2048 [Stars]//purl.org/becyt/ford/1 [https]Herbig-Haro objects ISM: jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: generalHigh Energy Physics - Phenomenology (hep-ph)Herbig-Haro objectsGeneral [X-Rays]jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: general [Herbig-Haro objects ISM]Jets And Outflows [Ism]ThermalProtostarstars: individualAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsStar formationX-rayAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]radiation mechanisms: non-thermalHerbig-Haro ObjectsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)Non-Thermal [Radiation Mechanisms]AstronomíaInterstellar mediumHigh Energy Physics - PhenomenologyISM: jets and outflowsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASThe Astrophysical Journal
researchProduct

3D numerical modeling of YSO accretion shocks

2013

International audience; The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modeling locally the impact of the infalling gas onto the chromosphere. We find t…

PhysicsAccretion (meteorology)Field (physics)PhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaFluxAstrophysics[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Magnetic fieldSettore FIS/05 - Astronomia E Astrofisica13. Climate actionRadiative transferMagnetic pressureMagnetohydrodynamicsaccretion shocksChromosphereAstrophysics::Galaxy Astrophysics
researchProduct

Modeling nonthermal emission from stellar bow shocks

2016

Context. Runaway O- and early B-type stars passing through the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high-energy photons by nonthermal radiative processes, but their efficiency is still debated. Aims: We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. Methods: We applied our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations fa…

Shock wavePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation mechanisms: non-thermal010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy and AstrophysicAcceleration of particle01 natural sciencesX-rays: ISMShock waveSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsnon-thermal; Shock waves; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [Acceleration of particles; Radiation mechanisms]
researchProduct

YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission

2013

Context. Theoretical arguments and numerical simulations of radiative shocks produced by the impact of the accreting gas onto young stars predict quasi-periodic oscillations in the emitted radiation. However, observational data do not show evidence of such periodicity. Aims. We investigate whether physically plausible perturbations in the accretion column or in the chromosphere could disrupt the shock structure influencing the observability of the oscillatory behavior. Methods. We performed local 2D magneto-hydrodynamical simulations of an accretion shock impacting a chromosphere, taking optically thin radiation losses and thermal conduction into account. We investigated the effects of seve…

Astrophysics::High Energy Astrophysical Phenomenaaccretion accretion disks magnetohydrodynamics (MHD) radiative transfer shock waves instabilitiesFOS: Physical sciencesPerturbation (astronomy)Astrophysics01 natural sciencesmagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsObservablePlasmashock wavesThermal conductionMagnetic fieldAmplitudeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Scienceradiative transferinstabilities[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

3D Gray Radiative Properties of Accretion Shocks in Young Stellar Objects

2013

International audience; We address the problem of the contribution of radiation to the structure and dynamics of accretion shocks on Young Stellar Objects. Solving the 3D RTE (radiative transfer equation) under our "gray LTE approach", i.e., using appropriate mean opacities computed in local thermodynamic equilibrium, we post-process the 3D MHD (magne-tohydrodynamic) structure of an accretion stream impacting the stellar chromosphere. We find a radiation flux of ten orders of magnitude larger than the accreting energy rate, which is due to a large overestimation of the radiative cooling. A gray LTE radiative transfer approximation is therefore not consistent with the given MHD structure of …

PhysicsOpacityRadiative coolingPhysicsQC1-999Young stellar objectAstrophysics[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Accretion (astrophysics)Radiation fluxN/A13. Climate actionRadiative transferAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamicsChromosphereAstrophysics::Galaxy Astrophysics
researchProduct

Gaia-ESO Survey: Global properties of clusters Trumpler 14 and 16 in the Carina nebula

2017

Aims: We present the first extensive spectroscopic study of the global population in star clusters Trumpler 16, Trumpler 14, and Collinder 232 in the Carina nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. Methods: In addition to the standard homogeneous survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. Results: We find about 400 good candidate members ranging from OB types down to slightly subsolar masses. About 100 heavily reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their l…

astro-ph.SROpen clusters and associations: individual: Carina nebulaastro-ph.GAExtinction (astronomy)PopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsOpen clusters and associations: individual: Trumpler 1401 natural sciencesindividual: Trumpler 16 [Open clusters and associations]Open clusters and associations: individual: Trumpler 16individual: Trumpler 14 [Open clusters and associations]Stars: early-typeearly-type [Stars]pre-main sequence [Stars]QB4600103 physical sciencesAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)O-type starLine (formation)[PHYS]Physics [physics]PhysicsNebulaeducation.field_of_studyOpen clusters and associations: Individual: Carina nebula; Open clusters and associations: Individual: Trumpler 14; Open clusters and associations: Individual: Trumpler 16; Stars: Early-type; Stars: Pre-main sequence; Astronomy and Astrophysics; Space and Planetary Science010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesStarsStar clusterAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Stars: pre-main sequenceAstrophysics::Earth and Planetary Astrophysicsindividual: Carina nebula [Open clusters and associations][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments

2021

Aims. EXor-type objects are protostars that display powerful UV-optical outbursts caused by intermittent and powerful events of magnetospheric accretion. These objects are not yet well investigated and are quite difficult to characterize. Several parameters, such as plasma stream velocities, characteristic densities, and temperatures, can be retrieved from present observations. As of yet, however, there is no information about the magnetic field values and the exact underlying accretion scenario is also under discussion. Methods. We use laboratory plasmas, created by a high power laser impacting a solid target or by a plasma gun injector, and make these plasmas propagate perpendicularly to …

Shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesProtostarAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[PHYS]Physics [physics]accretion disksAstronomy and AstrophysicsRadiusPlasmashock wavesAccretion accretion disksAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Scienceinstabilitiesstars: individual: V1118 OriAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

2017

Full list of authors: Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C. Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

Initial mass functionastro-ph.SRMetallicityMilky Wayastro-ph.GAFOS: Physical sciencesstars:abundancesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesevolution [Galaxy]Galaxy: diskpre-main sequence [Stars]0103 physical sciencesCluster (physics)Astrophysics::Solar and Stellar Astrophysicsgalaxy:disk010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsQBPhysicsGalaxy: evolutiongeneral [Open clusters and associations]010308 nuclear & particles physicsStar formationstars: abundances; stars: pre-main sequence; Galaxy: abundances; Galaxy:disk; Galaxy: evolution; open clusters and associations: generalStars: abundancesabundances [Galaxy]galaxy:evolutionAstronomy and AstrophysicsOpen clusters and associations: generalAstrophysics - Astrophysics of GalaxiesSupernovaAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)abundances [Stars]stars:pre-main sequenceChamaeleonStars: pre-main sequenceGalaxy: abundancesAstrophysics::Earth and Planetary Astrophysicsdisk [Galaxy]galaxy:abundancesopen clusters and associations:generalOpen cluster
researchProduct

Discovery of 15 Myr Old pre-Main Sequence Stars with Active Accretion and Sizeable Discs in NGC 6611

2012

N/A
researchProduct

Accretion in young stars: measure of the stream velocity of TW Hya from the X-ray Doppler shift

2015

High-resolution X-ray spectra are a unique tool to investigate the accretion process in young stars. In fact X-rays allow to investigate the accretion-shock region, where the infalling material is heated by strong shocks due to the impact with the denser stellar atmosphere. Here we show for the first time that it is possible to constrain the velocity of the accretion stream by measuring the Doppler shift of the emitted X-rays. To this aim we analyzed the deep Chandra/HETGS observation of the accreting young star TW Hya. We selected a sample of emission lines free from significant blends, fitted them with gaussian profiles, computed the radial velocity corresponding to each line, and average…

Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAccretion accretion disks Stars: pre-main sequence Stars: variables: T Tauri Herbig Ae/Be Techniques: spectroscopic X-rays: starsAstrophysics::Galaxy Astrophysics
researchProduct

X-ray and optical emission in protostellar jets: model predictions and comparison with observations

2007

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

Modeling the X-ray emission from the nearest jets: HH 154 and DG Tau

2010

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

X-ray Emission in protostellar jets

2005

Prompted by the recent detection of X-ray emission from Herbig-Haro objects, we studied the interaction between a supersonic jet originating from a young stellar object and the ambient medium; our aim is to investigate the mechanisms causing the X-ray emission. Our model takes into account the radiative losses from optically in plasmas and Spitzer's thermal conduction including saturation effects. We explored the parameter space defined by the density contrast between the ambient medium and the jet and by the Mach number, to infer the configurations which can give rise to X-ray emission. From the models, we derived the X-ray emission as it would be observed with Chandra/ACIS-I and XMM-Newto…

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

X-ray Emission from Protostellar Jets

2008

Shock waveISM: Herbig-Haro objectISM: jets and outflowX-rays: ISM
researchProduct

X-ray structures from outflowing Young Stellar Objects interacting with the Interstellar Medium

2012

N/A
researchProduct

X-ray emission in protostellar jets: comparison between model predictions and observations

2007

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

High Performance Computing on the COMETA Grid Infrastructure

2008

We present the High Performance Computing (HPC) projects jointly developed at the INAF - Osservatorio Astronomico di Palermo and at the DSFA - Universita` di Palermo which benefits of the Grid infrastructure of COMETA. We have contributed to setup the infrastructure in order to run HPC applications on the Grid. We report on our experience regarding to porting HPC applications to the Grid and to the first HPC simulations performed. The most demanding simulations describe the interaction of a magnetized supernova shock wave with an interstellar gas cloud. We discuss the resources required for the simulations, the performance and the scalability of our code on the Grid, and present first resul…

MagnetohydrodynamicsSettore FIS/05 - Astronomia E AstrofisicaHigh Performance ComputingHydrodynamicsAstrophysics
researchProduct

Modeling the X-ray emission from jets observed with Chandra

2009

Stars and Star Formation
researchProduct

Pre-main-sequence stars older than 8 Myr in the Eagle nebula

2013

accretion accretion discs scattering protoplanetary discs circumstellar matter Hertzsprung-Russell and colour-magnitude diagrams stars: pre-main-sequencepre-main-sequence [accretion accretion discs scattering protoplanetary discs circumstellar matter Hertzsprung-Russell and colour-magnitude diagrams stars]
researchProduct

Modeling the non-thermal emission from bowshocks produced by runaway stars

2014

N/A
researchProduct

X-ray emission from protostellar jet HH 154: first evidence of a diamond shock?

2011

N/A
researchProduct

Herbig-Haro objects: model prediction and comparison with X-ray and optical observations

2007

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct

Laboratory unraveling of matter accretion in young stars

2017

When matter accretes onto a young star, a shell of dense material can form around the impact, reducing its x-ray emission.

HOTELECTRON THERMAL CONDUCTIONPLASMAT-TAURI STARSAstrophysics::High Energy Astrophysical PhenomenaMAGNETIC-FIELDCLOUDSSciAdv r-articlesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSIMULATIONSX-RAY-EMISSIONSettore FIS/05 - Astronomia E AstrofisicaGASPhysical SciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Research ArticlesAstrophysics::Galaxy AstrophysicsResearch ArticleRADIATIVE SHOCKS
researchProduct

The diagnostic capability of iron limes

2013

N/A
researchProduct

X-ray emission from fast moving shocks in the protostellar jet HH 154: a binding diagnostic of the emission mechanism

2004

We propose to determine the proper motion of the X-ray source associated with HH 154, the only known protostellar jet in which the X-ray emission mechanism can be studied in detail. Our numerical simulations indicate that the X-rays are produced in a fast-moving (500 km/s) post-shock region, and our HST observations show high proper motion shocked material moving at similar speed. Detection (or lack of) of proper motion of the X-ray source will strongly confirm (or falsify) our model, and constitute the basis for a general theory of X-ray emission in protostellar jets. Understanding and modeling the emission mechanism is key to assess the lifetime of the X-ray emission and thus the influenc…

hydrodynamics – Herbig-Haro objects – ISM: jets and outflows – X-rays: ISM
researchProduct