6533b7cefe1ef96bd1256f8c

RESEARCH PRODUCT

Continuum Monte Carlo simulation of phase transitions in rod-like molecules at surfaces

F. M. HaasKurt BinderRudolf HilferRudolf Hilfer

subject

Bond lengthPhase transitionMolecular geometryMaterials scienceCondensed matter physicsLattice (order)Monte Carlo methodMonolayerGeneral Physics and AstronomyMoleculeAtmospheric temperature range

description

Stiff rod-like chain molecules with harmonic bond length potentials and trigonometric bond angle potentials are used to model Langmuir monolayers at high densities. One end of the rod-like molecules is strongly bound to a flat two-dimensional substrate which represents the air-water interface. A ground-state analysis is performed which suggests phase transitions between phases with and without collective uniform tilt. Large-scale off-lattice Monte Carlo simulations over a wide temperature range show in addition to the tilting transition the presence of a strongly constrained melting transition at high temperatures. The latter transition appears to be related to two-dimensional melting of the head group lattice. These findings show that the model contains both, two- and three-dimensional ergodicity breaking solidification transitions. We discuss our findings with respect to experiment.

https://doi.org/10.1007/bf02458816