6533b7cffe1ef96bd125830e
RESEARCH PRODUCT
Electronic and optical properties of pristine, N- and S-doped water-covered TiO2 nanotube surfaces
Sergei PiskunovEckhard SpohrStephane KenmoeOleg LisovskiYuri F. Zhukovskiisubject
Materials science010304 chemical physicsAbsorption spectroscopyBand gapDopingAb initioGeneral Physics and Astronomy010402 general chemistry01 natural sciencesMolecular physics0104 chemical sciencesCondensed Matter::Materials ScienceYield (chemistry)0103 physical sciencesDensity functional theoryPhysical and Theoretical ChemistryAbsorption (electromagnetic radiation)Photocatalytic water splittingdescription
For rational design and improvement of electronic and optical properties of water-splitting photocatalysts, the ability to control the band edge positions relative to the water redox potentials and the photoresponse as a function of environmental conditions is essential. We combine ab initio molecular dynamics simulations with ab initio many-body theoretical calculations to predict the bandgap and band edge energies, as well as the absorption spectrum of pristine and N- and S-doped TiO2 nanotubes using the DFT+U and G0W0 approaches. Both levels of theory show similar trends, and N+S-codoping appears to be the optimal system for photocatalytic water splitting both in dry and humid conditions. However, the effect is rather moderate. Compared to DFT+U, the enhanced many-body effects in the G0W0 calculations push the absolute energies of the band edges to higher values and yield increased quasi-particle bandgaps in better agreement with experiment. In dry and humid conditions, the electronic bandgap for all systems is found to be in the range of 6.0–6.2 eV with a redshift from electronic gap to optical gap. The absorption spectra show an optical anisotropy and different absorption thresholds for different light polarizations.For rational design and improvement of electronic and optical properties of water-splitting photocatalysts, the ability to control the band edge positions relative to the water redox potentials and the photoresponse as a function of environmental conditions is essential. We combine ab initio molecular dynamics simulations with ab initio many-body theoretical calculations to predict the bandgap and band edge energies, as well as the absorption spectrum of pristine and N- and S-doped TiO2 nanotubes using the DFT+U and G0W0 approaches. Both levels of theory show similar trends, and N+S-codoping appears to be the optimal system for photocatalytic water splitting both in dry and humid conditions. However, the effect is rather moderate. Compared to DFT+U, the enhanced many-body effects in the G0W0 calculations push the absolute energies of the band edges to higher values and yield increased quasi-particle bandgaps in better agreement with experiment. In dry and humid conditions, the electronic bandgap for all s...
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-28 | The Journal of Chemical Physics |