6533b7d0fe1ef96bd125a50f
RESEARCH PRODUCT
On the arithmetic of a family of degree-two K3 surfaces
Mckenzie WestDino FestiEdgar CostaChristopher NichollsFlorian Bouyersubject
Surface (mathematics)Rational numberPure mathematicsDegree (graph theory)Mathematics - Number TheoryGeneral Mathematics010102 general mathematics11G35 14J2801 natural sciencesMathematics - Algebraic GeometryTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesFOS: Mathematics010307 mathematical physicsNumber Theory (math.NT)0101 mathematicsArithmeticElement (category theory)Weighted projective spaceAlgebraic Geometry (math.AG)Mathematicsdescription
Let $\mathbb{P}$ denote the weighted projective space with weights $(1,1,1,3)$ over the rationals, with coordinates $x,y,z,$ and $w$; let $\mathcal{X}$ be the generic element of the family of surfaces in $\mathbb{P}$ given by \begin{equation*} X\colon w^2=x^6+y^6+z^6+tx^2y^2z^2. \end{equation*} The surface $\mathcal{X}$ is a K3 surface over the function field $\mathbb{Q}(t)$. In this paper, we explicitly compute the geometric Picard lattice of $\mathcal{X}$, together with its Galois module structure, as well as derive more results on the arithmetic of $\mathcal{X}$ and other elements of the family $X$.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-27 |