6533b7d0fe1ef96bd125ae44

RESEARCH PRODUCT

Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalide-Co-ε-Caprolactone) Nanoparticles by Thiol-Ene Reactions.

Frederik R. WurmMarie-luise FreyKatharina LandfesterVolker MailänderVolker MailänderSandra R.s. FerreiraDébora De OliveiraJohanna SimonJohanna SimonJennifer SchultzeCamila GuindaniCamila GuindaniPedro Henrique Hermes De AraújoKaloian Koynov

subject

Polymers and PlasticsNanoparticleBioengineering02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundLactonesMaterials ChemistryAnimalsHumansBovine serum albuminParticle SizeCaproateschemistry.chemical_classificationbiologyThiol-ene reactionBiomoleculeSerum Albumin Bovine021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical scienceschemistryCovalent bondbiology.proteinNanoparticlesCattleNanocarriers0210 nano-technologyCaprolactoneBiotechnologyConjugateHeLa Cells

description

When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new "identity" and determine their biological fate. Protein-nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non-covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide-co-e-caprolactone) (PGlCL) nanoparticles containing double bonds in the main polymer chain is covalently functionalized with bovine serum albumin (BSA) by thiol-ene chemistry, producing conjugates which are resistant to dissociation. The successful formation of the covalent conjugates is confirmed by flow cytometry (FC) and fluorescence correlation spectroscopy (FCS). Transmission electron microscopy (TEM) allows the visualization of the conjugate formation, and the presence of a protein layer surrounding the NPs can be observed. After conjugation with BSA, NPs present reduced cell uptake by HeLa and macrophage RAW264.7 cells, in comparison to uncoated NP. These results demonstrate that it is possible to produce stable conjugates by covalently binding BSA to PGlCL NP through thiol-ene reaction.

10.1002/mabi.201900145https://pubmed.ncbi.nlm.nih.gov/31490631