6533b7d0fe1ef96bd125aef8

RESEARCH PRODUCT

Detection of steering direction using EEG recordings based on sample entropy and time-frequency analysis.

Gerhard SchmidtS. JaschkeGünther DeuschlMuthuraman MuthuramanP. Caldero-bardajiX. LongfeiJens ReermannK. G. Mideska

subject

Automobile DrivingSupport Vector MachineComputer scienceSpeech recognitionEntropyElectroencephalography03 medical and health sciencesEntropy (classical thermodynamics)0302 clinical medicine0502 economics and businessAccelerometrymedicineEntropy (information theory)HumansEntropy (energy dispersal)Entropy (arrow of time)050210 logistics & transportationPrincipal Component Analysismedicine.diagnostic_testbusiness.industryEntropy (statistical thermodynamics)Dimensionality reduction05 social sciencesPattern recognitionElectroencephalographyTime–frequency analysisSupport vector machineSample entropyPrincipal component analysisArtificial intelligencebusiness030217 neurology & neurosurgeryAlgorithmsEntropy (order and disorder)

description

Monitoring driver's intentions beforehand is an ambitious aim, which will bring a huge impact on the society by preventing traffic accidents. Hence, in this preliminary study we recorded high resolution electroencephalography (EEG) from 5 subjects while driving a car under real conditions along with an accelerometer which detects the onset of steering. Two sensor-level analyses, sample entropy and time-frequency analysis, have been implemented to observe the dynamics before the onset of steering. Thus, in order to classify the steering direction we applied a machine learning algorithm consisting of: dimensionality reduction and classification using principal-component-analysis (PCA) and support-vector-machine (SVM), respectively. The results showed an increase of the sample entropy and the estimated power values in the theta and alpha frequency bands, 100 ms before the onset of steering. The detection of steering direction depicted that sample entropy gives a higher classification accuracy (73.5% ±6.8) as compared to that of using the estimated power for theta and alpha frequency bands (62.6% ±5.6).

10.1109/embc.2016.7590830https://pubmed.ncbi.nlm.nih.gov/28268453