6533b7d0fe1ef96bd125b6c1

RESEARCH PRODUCT

A Multiscale Approach to Polycrystalline Materials Damage and Failure

Ivano BenedettiM.h. Aliabadi

subject

Materials sciencebusiness.industryMechanical EngineeringMicromechanicsStructural engineeringMechanicsMechanics of MaterialsMaterial DegradationPeriodic boundary conditionsGeneral Materials ScienceCrystalliteMacrobusinessVoronoi diagramBoundary element methodSoftening

description

A two-scale three-dimensional approach for degradation and failure in polycrystalline materials is presented. The method involves the component level and the grain scale. The damage-induced softening at the macroscale is modelled employing an initial stress boundary element approach. The microscopic degradation is explicitly modelled associating Representative Volume Elements (RVEs) to relevant points of the macro continuum and employing a cohesive-frictional 3D grain-boundary formulation to simulate intergranular degradation and failure in the Voronoi morphology. Macro-strains are downscaled as RVEs' periodic boundary conditions, while overall macro-stresses are obtained upscaling the micro-stress field via volume averages. The comparison between effective macro-stresses for the damaged and undamaged RVEs allows to define a macroscopic measure of local material degradation. Some attention is devoted to avoiding pathological damage localization at the macro-scale. The multiscale processing algorithm is described and some preliminary results are illustrated.

https://doi.org/10.4028/www.scientific.net/kem.627.33