6533b7d1fe1ef96bd125cb66
RESEARCH PRODUCT
Dental wear proxy correlation in a long-term feeding experiment on sheep ( Ovis aries )
Daniela E. WinklerDaniela E. WinklerDaniela E. WinklerEllen Schulz-kornasMarcus ClaussJean-michel HattNicole L. AckermansNicole L. AckermansLouise F. MartinThomas M. Kaisersubject
0106 biological sciencesOrthodonticsMolar0303 health sciencesFuture studiesbiologyChemistryDental WearBiomedical EngineeringBiophysicsBioengineeringbiology.organism_classification010603 evolutionary biology01 natural sciencesBiochemistryMesowearBiomaterialsCorrelation03 medical and health sciencesstomatognathic systemProxy (statistics)Mandibular molarOvis030304 developmental biologyBiotechnologydescription
Dietary reconstruction in vertebrates often relies on dental wear-based proxies. Although these proxies are widely applied, the contributions of physical and mechanical processes leading to meso- and microwear are still unclear. We tested their correlation using sheep ( Ovis aries , n = 39) fed diets of varying abrasiveness for 17 months as a model. Volumetric crown tissue loss, mesowear change and dental microwear texture analysis (DMTA) were all applied to the same teeth. We hereby correlate: (i) 46 DMTA parameters with each other, for the maxillary molars (M1, M2, M3), and the second mandibular molar (m2); (ii) 10 mesowear variables to each other and to DMTA for M1, M2, M3 and m2; and (iii) volumetric crown tissue loss to mesowear and DMTA for M2. As expected, many DMTA parameters correlated strongly with each other, supporting the application of reduced parameter sets in future studies. Correlation results showed only few DMTA parameters correlated with volumetric tissue change and even less so with mesowear variables, with no correlation between mesowear and volumetric tissue change. These findings caution against interpreting DMTA and mesowear patterns in terms of actual tissue removal until these dental wear processes can be better understood at microscopic and macroscopic levels.
year | journal | country | edition | language |
---|---|---|---|---|
2021-07-01 | Journal of The Royal Society Interface |