6533b7d1fe1ef96bd125d314

RESEARCH PRODUCT

The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock.

Elena GarreVicent PelechanoManuel Sánchez Del PinoPaula AlepuzPer Sunnerhagen

subject

Saccharomyces cerevisiae Proteinslcsh:QH426-470Gene ExpressionSaccharomyces cerevisiaeBiochemistryOsmotic PressureOsmotic ShockGeneticsRNA MessengerCellular Stress ResponsesGlycerol-3-Phosphate Dehydrogenase (NAD+)Biology and life sciencesMessenger RNAMembrane Transport ProteinsRNA-Binding ProteinsProteinsCell BiologyRepressor ProteinsNucleic acidslcsh:GeneticsRibonucleoproteinsRNA Cap-Binding ProteinsCell ProcessesProtein BiosynthesisPolyribosomesRNAProtein TranslationCellular Structures and OrganellesRibosomesProtein BindingResearch Article

description

RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5’ end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered.

10.1371/journal.pgen.1007563https://pubmed.ncbi.nlm.nih.gov/30059503