0000000000159427

AUTHOR

Elena Garre

showing 12 related works from this author

The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock.

2018

RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under…

Saccharomyces cerevisiae Proteinslcsh:QH426-470Gene ExpressionSaccharomyces cerevisiaeBiochemistryOsmotic PressureOsmotic ShockGeneticsRNA MessengerCellular Stress ResponsesGlycerol-3-Phosphate Dehydrogenase (NAD+)Biology and life sciencesMessenger RNAMembrane Transport ProteinsRNA-Binding ProteinsProteinsCell BiologyRepressor ProteinsNucleic acidslcsh:GeneticsRibonucleoproteinsRNA Cap-Binding ProteinsCell ProcessesProtein BiosynthesisPolyribosomesRNAProtein TranslationCellular Structures and OrganellesRibosomesProtein BindingResearch ArticlePLoS genetics
researchProduct

Yeast biomass, an optimised product with myriad applications in the food industry

2015

Abstract Background Yeasts, especially Saccharomyces cerevisiae and related species, have been used by humans since ancient times. In past centuries, the increased demand in yeast-related products has converted yeast biomass into a valuable product, and has forced the generation and optimisation of industrial yeast biomass production processes, which currently generate vast quantities of yeasts yearly. Scope and approach In this article, we review key aspects for the yield first produced empirically, but by also using recent yeast physiology knowledge. We summarise the classical and latest yeasts biomass applications in the food industry, which range from the yeast extract used as an additi…

Food industrybusiness.industryIndustrial productionSaccharomyces cerevisiaeBiomassBiologybiology.organism_classificationYeastfood.foodBiotechnologyProduct (business)foodNutritional yeastYeast extractbusinessFood ScienceBiotechnologyTrends in Food Science & Technology
researchProduct

Trx2p-dependent Regulation of Saccharomyces cerevisiae Oxidative Stress Response by the Skn7p Transcription Factor under Respiring Conditions

2013

The whole genome analysis has demonstrated that wine yeasts undergo changes in promoter regions and variations in gene copy number, which make them different to lab strains and help them better adapt to stressful conditions during winemaking, where oxidative stress plays a critical role. Since cytoplasmic thioredoxin II, a small protein with thiol-disulphide oxidoreductase activity, has been seen to perform important functions under biomass propagation conditions of wine yeasts, we studied the involvement of Trx2p in the molecular regulation of the oxidative stress transcriptional response on these strains. In this study, we analyzed the expression levels of several oxidative stress-related…

Saccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeBlotting WesternMolecular Sequence Datalcsh:MedicineWineOxidative phosphorylationSaccharomyces cerevisiaemedicine.disease_causePolymerase Chain ReactionThioredoxinsGene Expression Regulation FungalGene expressionmedicineImmunoprecipitationPhosphorylationlcsh:ScienceTranscription factorHeat-shock responseDNA PrimersRegulation of gene expressionMultidisciplinarybiologyBase Sequencelcsh:RPromoterbiology.organism_classificationCatalasebeta-GalactosidaseYeastGene regulationDNA-Binding ProteinsOxidative StressBiochemistryOxidative stresslcsh:QGene expressionThioredoxinTranscription factorOxidative stressGene DeletionResearch ArticlePlasmidsTranscription FactorsPLoS ONE
researchProduct

The three trehalases Nth1p, Nth2p and Ath1p participate in the mobilization of intracellular trehalose required for recovery from saline stress in Sa…

2009

Trehalose accumulation is a common response to several stresses in the yeast Saccharomyces cerevisiae. This metabolite protects proteins and membrane lipids from structural damage and helps cells to maintain integrity. Based on genetic studies, degradation of trehalose has been proposed as a required mechanism for growth recovery after stress, and the neutral trehalase Nth1p as the unique degradative activity involved. Here we constructed a collection of mutants for several trehalose metabolism and transport genes and analysed their growth and trehalose mobilization profiles during experiments of saline stress recovery. The behaviour of the triple ¿nth1¿nth2¿ath1 and quadruple ¿nth1¿nth2¿at…

Saccharomyces cerevisiae ProteinsMonosaccharide Transport ProteinsSymportersMutantSaccharomyces cerevisiaeGenes FungalTrehaloseMetabolismSaccharomyces cerevisiaeBiologybiology.organism_classificationMicrobiologyTrehaloseYeastchemistry.chemical_compoundBiochemistrychemistryStress PhysiologicalSymporterTrehalaseTrehalaseIntracellularGene DeletionMicrobiology (Reading, England)
researchProduct

Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.

2009

The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry wine yeast is routinely used as starter for must fermentations. Many studies have shown the complexity of the cellular effects caused by water loss, including oxidative injuries on macromolecular components. However the technological interest of yeast drying was not addressed in those studies, and the dehydration conditions were far from the industrial practice. In the present study a molecular approach was used to characterize the relevant injuring conditions during pilot plant dehydrations under two different drying temperatures (i.e., 35…

Time FactorsWineSaccharomyces cerevisiaeBiologymedicine.disease_causeMicrobiologyLipid peroxidationchemistry.chemical_compoundIndustrial MicrobiologyGlutaredoxinGene Expression Regulation FungalmedicineBiomassDesiccationWinemakingWinefood and beveragesGeneral MedicineGlutathioneYeastYeast in winemakingOxidative StressBiochemistrychemistryFermentationLipid PeroxidationOxidation-ReductionOxidative stressFood ScienceInternational journal of food microbiology
researchProduct

The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at pr…

2015

The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression c…

0301 basic medicineTBX1Saccharomyces cerevisiae ProteinsTranscription GeneticBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistry03 medical and health sciencesOsmotic PressureStructural BiologyTranscription (biology)Gene Expression Regulation FungalGene expressionGeneticsRNA MessengerMolecular BiologyTranscription factorTranscription Initiation GeneticbiologyActivator (genetics)Nuclear ProteinsPromoterMolecular biology030104 developmental biologyRNA Cap-Binding Proteinsbiology.proteinMitogen-Activated Protein KinasesCREB1Transcription FactorsBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress.

2013

The expression of ribosomal protein (RP) genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cell…

OsmosisTranscription GeneticNonsense-mediated decaylcsh:MedicineYeast and Fungal ModelsMolecular cell biologyGene Expression Regulation FungalGene expressionProtein biosynthesisRNA PrecursorsRNA Processing Post-Transcriptionallcsh:ScienceOligonucleotide Array Sequence AnalysisCellular Stress ResponsesRegulation of gene expressionMultidisciplinarybiologyProtein translationExonsGenomicsCell biologyFunctional GenomicsMitogen-activated protein kinaseResearch ArticleRibosomal ProteinsSaccharomyces cerevisiae ProteinsOsmotic shockEstrès oxidatiuSaccharomyces cerevisiaeGenes FungalDNA transcriptionSaccharomyces cerevisiaeModels BiologicalGenètica molecularSaccharomycesModel OrganismsRibosomal proteinStress PhysiologicalBiologylcsh:RRNA stabilitybiology.organism_classificationMolecular biologyIntronsNonsense Mediated mRNA DecayKineticsRNA processingbiology.proteinlcsh:QGene expressionGenome Expression AnalysisProteïnesPloS one
researchProduct

Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock.

2011

Global translation is inhibited in Saccharomyces cerevisiae cells under osmotic stress; nonetheless, osmostress-protective proteins are synthesized. We found that translation mediated by the mRNA cap-binding protein Cbc1 is stress-resistant and necessary for the rapid translation of osmostress-protective proteins under osmotic stress.

Cell PhysiologySaccharomyces cerevisiae ProteinsOsmotic shockRNA StabilitySaccharomyces cerevisiaeCycloheximideBiology03 medical and health scienceschemistry.chemical_compoundGene Knockout TechniquesEukaryotic translationOsmotic PressureStress PhysiologicalPolysomeGene Expression Regulation FungalProtein biosynthesisRNA MessengerMolecular Biology030304 developmental biologyCell Nucleus0303 health sciencesMicrobial ViabilityOsmotic concentration030302 biochemistry & molecular biologyEIF4ENuclear ProteinsTranslation (biology)Cell BiologyArticlesAdaptation PhysiologicalProtein TransportEukaryotic Initiation Factor-4EchemistryBiochemistryRNA Cap-Binding ProteinsPolyribosomesProtein BiosynthesisProtein BindingMolecular biology of the cell
researchProduct

Recent Advances in Yeast Biomass Production

2011

Yeasts have been used by humans to produce foods for thousands of years. Bread, wine, sake and beer are made with the essential contribution of yeasts, especially from the species Saccharomyces cerevisiae. The first references to humans using yeasts were found in Caucasian and Mesopotamian regions and date back to approximately 7000 BC. However, it was not until 1845 when Louis Pasteur discovered that yeasts were microorganisms capable of fermenting sugar to produce CO2 and ethanol. Ancient practices were based on the natural presence of this unicellular eukaryote, which spontaneously starts the fermentation of sugars. As industrialisation increased the manufacture of fermented products, th…

Winebusiness.industryMicroorganismSaccharomyces cerevisiaefood and beveragesBiomassBiologybiology.organism_classificationYeastBiotechnologyYield (wine)BrewingFermentationbusiness
researchProduct

Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae.

2008

The role of the acid trehalase encoded by the ATH1 gene in the yeast Saccharomyces cerevisiae is still unclear. In this work, we investigated the regulation of ATH1 transcription and found a clear involvement of the protein kinase Hog1p in the induction of this gene under severe stress conditions, such as high salt. We also detected changes in the acid trehalase activity and trehalose levels, indicating a role of the acid trehalase in intracellular trehalose mobilization. Finally, the growth analysis for different mutants in neutral and acid trehalases after high salt stress implicates acid trehalase activity in saline stress resistance.

SalinitySaccharomyces cerevisiae ProteinsTranscription GeneticSaccharomyces cerevisiaeMutantTrehalase activitySaccharomyces cerevisiaeBiologyApplied Microbiology and BiotechnologyMicrobiologychemistry.chemical_compoundOsmotic PressureGene Expression Regulation FungalTrehalaseTrehalaseProtein kinase AGene Expression ProfilingTrehaloseGeneral Medicinebiology.organism_classificationTrehaloseYeastBiochemistrychemistryMitogen-Activated Protein KinasesIntracellularGene DeletionFEMS yeast research
researchProduct

Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants

2017

In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. Howev…

0301 basic medicineSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeeIF2αSaccharomyces cerevisiaeProtein Serine-Threonine KinasesBiology03 medical and health sciencesPolysomeEukaryotic initiation factormedicineProtein biosynthesisLow temperatureEukaryotic Initiation FactorsPhosphorylationProtein kinase AMolecular BiologyTryptophanTranslation (biology)Cell Biologybiology.organism_classificationAdaptation PhysiologicalYeastHog1Cold TemperatureBasic-Leucine Zipper Transcription Factors030104 developmental biologyBiochemistryProtein BiosynthesisPolysomesSnf1Cold sensitivityPhosphorylationMitogen-Activated Protein Kinasesmedicine.symptomEnergy MetabolismGcn2 pathwayTranscription FactorsBiochimica et Biophysica Acta (BBA) - Molecular Cell Research
researchProduct

Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status

2016

International audience; All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the act…

0301 basic medicineMyriocinOrm2Saccharomyces-cerevisiaeMembrane propertiesFatty Acids MonounsaturatedGlycogen Synthase Kinase 3Bacteriocins[SDV.IDA]Life Sciences [q-bio]/Food engineeringHomeostasisPhosphorylationMicroscopy ConfocalbiologyEffectorPlasma-membraneActin cytoskeleton[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringPhospholipid translocationTransmembrane proteinCell biologyCold TemperatureBiochemistryP-type atpasesSignal transductionCold stressCell-wall integrityProtein BindingSignal TransductionProteins slm1Saccharomyces cerevisiae ProteinsPhospholipid translocationHigh-pressureSaccharomyces cerevisiaeImmunoblottingFluorescence PolarizationSaccharomyces cerevisiaeSignallingModels Biological3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesBudding yeastMolecular BiologySphingolipids030102 biochemistry & molecular biologyTryptophan permeasePhospholipid flippingMembrane ProteinsCell Biologybiology.organism_classificationActin cytoskeletonSphingolipidYeast030104 developmental biologyMembrane proteinMutationPeptidesReactive Oxygen Species
researchProduct