0000000000159429

AUTHOR

Per Sunnerhagen

showing 5 related works from this author

The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock.

2018

RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under…

Saccharomyces cerevisiae Proteinslcsh:QH426-470Gene ExpressionSaccharomyces cerevisiaeBiochemistryOsmotic PressureOsmotic ShockGeneticsRNA MessengerCellular Stress ResponsesGlycerol-3-Phosphate Dehydrogenase (NAD+)Biology and life sciencesMessenger RNAMembrane Transport ProteinsRNA-Binding ProteinsProteinsCell BiologyRepressor ProteinsNucleic acidslcsh:GeneticsRibonucleoproteinsRNA Cap-Binding ProteinsCell ProcessesProtein BiosynthesisPolyribosomesRNAProtein TranslationCellular Structures and OrganellesRibosomesProtein BindingResearch ArticlePLoS genetics
researchProduct

Crotofolane Diterpenoids and Other Constituents Isolated from Croton kilwae

2023

Six new crotofolane diterpenoids (1-6) and 13 known compounds (7-19) were isolated from the MeOH- CH2Cl2 (1:1, v/v) extracts of the leaves and stem bark of Croton kilwae. The structures of the new compounds were elucidated by extensive analysis of spectroscopic and mass spectrometric data. The structure of crotokilwaepoxide A (1) was confirmed by single -crystal X-ray diffraction, allowing for the determination of its absolute configuration. The crude extracts and the isolated compounds were investigated for antiviral activity against respiratory syncytial virus (RSV) and human rhinovirus type-2 (HRV-2) in HEp-2 and HeLa cells, respectively, for antibacterial activity against the Gram-posit…

PharmacologyOrganisk kemiaromaattiset yhdisteetbioaktiiviset yhdisteetcarbonOrganic Chemistryinfrared lightPharmaceutical SciencealkylsluonnonaineetAnalytical ChemistryterpeenitComplementary and alternative medicinetyräkkikasvitDrug Discoverycarbon-14Molecular Medicinenuclear magnetic resonance spectroscopy
researchProduct

The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at pr…

2015

The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression c…

0301 basic medicineTBX1Saccharomyces cerevisiae ProteinsTranscription GeneticBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistry03 medical and health sciencesOsmotic PressureStructural BiologyTranscription (biology)Gene Expression Regulation FungalGene expressionGeneticsRNA MessengerMolecular BiologyTranscription factorTranscription Initiation GeneticbiologyActivator (genetics)Nuclear ProteinsPromoterMolecular biology030104 developmental biologyRNA Cap-Binding Proteinsbiology.proteinMitogen-Activated Protein KinasesCREB1Transcription FactorsBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Functional analysis of yeast gene families involved in metabolism of vitamins B1and B6

2002

In order to clarify their physiological functions, we have undertaken a characterization of the three-membered gene families SNZ1-3 and SNO1-3. In media lacking vitamin B(6), SNZ1 and SNO1 were both required for growth in certain conditions, but neither SNZ2, SNZ3, SNO2 nor SNO3 were required. Copies 2 and 3 of the gene products have, in spite of their extremely close sequence similarity, slightly different functions in the cell. We have also found that copies 2 and 3 are activated by the lack of thiamine and that the Snz proteins physically interact with the thiamine biosynthesis Thi5 protein family. Whereas copy 1 is required for conditions in which B(6) is essential for growth, copies 2 …

GeneticsProtein familyFunctional analysisSaccharomyces cerevisiaeBioengineeringMetabolismBiologybiology.organism_classificationApplied Microbiology and BiotechnologyBiochemistrychemistry.chemical_compoundBiochemistryBiosynthesischemistryGeneticsGene familyThiamineGeneBiotechnologyYeast
researchProduct

Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock.

2011

Global translation is inhibited in Saccharomyces cerevisiae cells under osmotic stress; nonetheless, osmostress-protective proteins are synthesized. We found that translation mediated by the mRNA cap-binding protein Cbc1 is stress-resistant and necessary for the rapid translation of osmostress-protective proteins under osmotic stress.

Cell PhysiologySaccharomyces cerevisiae ProteinsOsmotic shockRNA StabilitySaccharomyces cerevisiaeCycloheximideBiology03 medical and health scienceschemistry.chemical_compoundGene Knockout TechniquesEukaryotic translationOsmotic PressureStress PhysiologicalPolysomeGene Expression Regulation FungalProtein biosynthesisRNA MessengerMolecular Biology030304 developmental biologyCell Nucleus0303 health sciencesMicrobial ViabilityOsmotic concentration030302 biochemistry & molecular biologyEIF4ENuclear ProteinsTranslation (biology)Cell BiologyArticlesAdaptation PhysiologicalProtein TransportEukaryotic Initiation Factor-4EchemistryBiochemistryRNA Cap-Binding ProteinsPolyribosomesProtein BiosynthesisProtein BindingMolecular biology of the cell
researchProduct