6533b7d1fe1ef96bd125d8d3

RESEARCH PRODUCT

Stochastic Nonlinear Time Series Forecasting Using Time-Delay Reservoir Computers: Performance and Universality

Julie HenriquesLyudmila GrigoryevaLaurent LargerJuan-pablo Ortega

subject

Multivariate statisticsMathematical optimizationTime FactorsRealized varianceDifferential equationComputer scienceCognitive NeuroscienceMathematicsofComputing_NUMERICALANALYSIS02 engineering and technologyComputer Communication NetworksArtificial Intelligence0502 economics and business0202 electrical engineering electronic engineering information engineeringHumansTime seriesSimulation050205 econometrics Stochastic Processes[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Series (mathematics)Artificial neural networkComputersStochastic process05 social sciencesReservoir computingSampling (statistics)Universality (dynamical systems)Nonlinear systemNonlinear DynamicsData Interpretation Statistical020201 artificial intelligence & image processingNeural Networks ComputerForecasting

description

International audience; Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay diFFerential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs.

https://doi.org/10.2139/ssrn.2350331