6533b7d2fe1ef96bd125e2d9

RESEARCH PRODUCT

Resonance of cortico-cortical connections of the motor system with the observation of goal directed grasping movements

Emanuele Lo GerfoCarlo CaltagironeFederica LupoGiacomo KochViviana VersaceMassimiliano OliveriSonia Bonnì

subject

MalePremotor cortexmedicine.medical_treatmentObservationParietal cortexGoalBehavioral NeuroscienceCortex (anatomy)Neural PathwaysEvoked PotentialsMirror neuronCerebral CortexConnectivityBrain MappingHand StrengthMIRROR NEURONSBody movementSkeletalTranscranial Magnetic Stimulationmedicine.anatomical_structureMotorMuscleFemaleSettore MED/26 - NeurologiaPrimary motor cortexPsychologyGoalsHumanAdultConnectivity; Observation; Parietal cortex; Premotor cortex; Transcranial magnetic stimulation;Cognitive NeuroscienceMovementGoals; Movement; Muscle Skeletal; Male; Young Adult; Electromyography; Female; Evoked Potentials Motor; Cerebral Cortex; Humans; Photic Stimulation; Psychomotor Performance; Observation; Hand Strength; Neural Pathways; Transcranial Magnetic Stimulation; Brain Mapping; AdultPosterior parietal cortexExperimental and Cognitive PsychologyConnectivity; Observation; Parietal cortex; Premotor cortex; Transcranial magnetic stimulationNOPremotor cortexNeural PathwayYoung AdultMotor systemmedicineHumansMuscle SkeletalSettore M-PSI/02 - Psicobiologia E Psicologia FisiologicaElectromyographyEvoked Potentials MotorTranscranial magnetic stimulationGoals; Young Adult; Humans; Electromyography; Observation; Movement; Muscle Skeletal; Cerebral Cortex; Photic Stimulation; Brain Mapping; Evoked Potentials Motor; Adult; Neural Pathways; Hand Strength; Psychomotor Performance; Transcranial Magnetic Stimulation; Female; MaleTMSNeurosciencePhotic StimulationPsychomotor Performance

description

Goal directed movements require the activation of parietal, premotor and primary motor areas. In monkeys, neurons of these areas become active also during the observation of movements performed by others, especially for coding the goal of the action (mirror system). Using bifocal transcranial magnetic stimulation (TMS) in healthy subjects, we tested whether the observation of goal directed reach to grasp actions may lead to specific changes in the short-latency connections linking key areas of the mirror system, such as the anterior intraparietal cortex (AIP) and the ventral premotor cortex (PMv), with the primary motor cortex (M1). We found that AIP-M1 and PMv-M1 cortico-cortical interactions were specifically activated when observing successful reaching to grasp goal directed actions, in which the hand posture was congruent with the goal of the action performed by the actor. On the other hand they were not modified when the same goal directed actions were performed wrongly with an inappropriate grasping posture. A similar profile of excitability was observed when testing specific intracortical facilitatory circuits in M1 (I 2-waves), known to reflect the activity in cortico-cortical pathways transmitting information from PMv. We conclude that the simple observation of others' goal directed actions is able to induce specific neurophysiological changes in some cortico-cortical circuits of the human motor system. © 2010 Elsevier Ltd.

10.1016/j.neuropsychologia.2010.07.037http://hdl.handle.net/2108/66050