Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease
BACKGROUND: The neural mechanisms and the circuitry involved in levodopa-induced dyskinesia (LID) are still partially obscure. LID can be considered the consequence of an abnormal pattern or code of activity that originates and is conveyed from the basal ganglia to the thalamus and the cortical motor areas. However, not only striatothalamocortical motor circuits but also other interconnected pathways could be implicated in its pathogenesis. METHODS: In a series of experiments, we applied repetitive transcranial magnetic stimulation (rTMS) over the lateral cerebellum in a group of patients with advanced Parkinson disease, to investigate whether modulation of cerebellothalamocortical circuits…
Resonance of cortico-cortical connections of the motor system with the observation of goal directed grasping movements
Goal directed movements require the activation of parietal, premotor and primary motor areas. In monkeys, neurons of these areas become active also during the observation of movements performed by others, especially for coding the goal of the action (mirror system). Using bifocal transcranial magnetic stimulation (TMS) in healthy subjects, we tested whether the observation of goal directed reach to grasp actions may lead to specific changes in the short-latency connections linking key areas of the mirror system, such as the anterior intraparietal cortex (AIP) and the ventral premotor cortex (PMv), with the primary motor cortex (M1). We found that AIP-M1 and PMv-M1 cortico-cortical interacti…
The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects
We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to t…
Cortical networks of procedural learning: Evidence from cerebellar damage
The lateral cerebellum plays a critical role in procedural learning that goes beyond the strict motor control functions attributed to it. Patients with cerebellar damage show marked impairment in the acquisition of procedures, as revealed by their performance on the serial reaction time task (SRTT). Here we present the case of a patient affected by ischemic damage involving the left cerebellum who showed a selective deficit in procedural learning while performing the SRTT with the left hand. The deficit recovered when the cortical excitability of an extensive network involving both cerebellar hemispheres and the dorsolateral prefrontal cortex (DLPFC) was decreased by low-frequency repetitiv…
rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory.
The existence of a specific and widely distributed network for spatial working memory (WM) in humans, involving the posterior parietal cortex and the prefrontal cortex, is supported by a number of neuroimaging studies. We used a repetitive transcranial magnetic stimulation (rTMS) approach to investigate the temporal dynamics and the reciprocal interactions of the different areas of the parieto-frontal network in normal subjects performing a spatial WM task, with the aim to compare neural activity of the different areas in the delay and decision phases of the task. Trains of rTMS at 25 Hz were delivered over the posterior parietal cortex (PPC), the premotor cortex (SFG) and the dorsolateral …
Spatial-temporal interactions in the human brain
The review summarises current evidence on the cognitive mechanisms for the integration of spatial and temporal representations and of common brain structures to process the where and when of stimuli. Psychophysical experiments document the presence of spatially localised distortions of sub-second time intervals and suggest that visual events are timed by neural mechanisms that are spatially selective. On the other hand, experiments with supra-second intervals suggest that time could be represented on a mental time-line ordered from left-to-right, similar to what is reported for other ordered quantities, such as numbers. Neuroimaging and neuropsychological findings point towards the posterio…
Recognition memory and prefrontal cortex: Dissociating recollection and familiarity processes using rTMS
Recognition memory can be supported by both the assessment of the familiarity of an item and by the recollection of the context in which an item was encountered. The neural substrates of these memory processes are controversial. To address these issues we applied repetitive transcranial magnetic stimulation (rTMS) over the right and left dorsolateral prefrontal cortex (DLPFC) of healthy subjects performing a remember/know task. rTMS disrupted familiarity judgments when applied before encoding of stimuli over both right and left DLPFC. rTMS disrupted recollection when applied before encoding of stimuli over the right DLPFC. These findings suggest that the DLPFC plays a critical role in recog…
Modulation of excitatory and inhibitory circuits for visual awareness in the human right parietal cortex.
The balance of specific patterns of excitation and inhibition in critical regions of both hemispheres could be relevant in orienting attention over the extrapersonal space. In the present study a group of normal subjects had to detect small rectangular stimuli presented briefly on a computer screen in three different conditions: unilateral presentation either to left or right visual periphery or bilateral simultaneous presentation. Paired transcranial magnetic stimulation (TMS), was applied over the right parietal cortex 150 ms after the presentation of the visual stimuli with different inter-stimulus intervals (ISIs: 1, 3,5 and 10 ms). When paired TMS was applied 150 ms, but not 100 ms, af…
Continuous theta burst stimulation (cTBS) on left cerebellar hemisphere affects mental rotation tasks during music listening.
Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR) or abstract (AMR) mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS) of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a “Moz…
rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson disease
The neural mechanisms and circuitry involved in levodopa-induced dyskinesia are unclear. Using repetitive transcranial magnetic stimulation (rTMS) over the supplementary motor area (SMA) in a group of patients with advanced Parkinson disease, the authors investigated whether modulation of SMA excitability may result in a modification of a dyskinetic state induced by continuous apomorphine infusion. rTMS at 1 Hz was observed to markedly reduce drug-induced dyskinesias, whereas 5-Hz rTMS induced a slight but not significant increase.
Exploring the relationship between semantics and space
The asymmetric distribution of human spatial attention has been repeatedly documented in both patients and healthy controls. Biases in the distribution of attention and/or in the mental representation of space may also affect some aspects of language processing. We investigated whether biases in attention and/or mental representation of space affect semantic representations. In particular, we investigated whether semantic judgments could be modulated by the location in space where the semantic information was presented and the role of the left and right parietal cortices in this task. Healthy subjects were presented with three pictures arranged horizontally (one middle and two outer picture…
Cerebellar Contribution to Mental Rotation: a cTBS Study
A cerebellar role in spatial information processing has been advanced even in the absence of physical manipulation, as occurring in mental rotation. The present study was aimed at investigating the specific involvement of left and right cerebellar hemispheres in two tasks of mental rotation. We used continuous theta burst stimulation to downregulate cerebellar hemisphere excitability in healthy adult subjects performing two mental rotation tasks: an Embodied Mental Rotation (EMR) task, entailing an egocentric strategy, and an Abstract Mental Rotation (AMR) task entailing an allocentric strategy. Following downregulation of left cerebellar hemisphere, reaction times were slower in comparison…
Perceptual Pseudoneglect in Schizophrenia: Candidate Endophenotype and the Role of the Right Parietal Cortex
Several contributions have reported an altered expression of pseudoneglect in psychiatric disorders, highlighting the existence of an anomalous brain lateralization in affected subjects. Surprisingly, no studies have yet investigated pseudoneglect in first-degree relatives (FdR) of psychiatric patients. We investigated performance on “paper and pencil” line bisection (LB) tasks in 68 schizophrenic patients (SCZ), 42 unaffected FdR, 41 unipolar depressive patients (UP), and 103 healthy subjects (HS). A subgroup of 20 SCZ and 16 HS underwent computerized LB and mental number line bisection (MNL) tasks requiring judgment of prebisected lines and numerical intervals. Moreover, we evaluated, in …
Keeping memory for intentions: A cTBS investigation of the frontopolar cortex
The present study aimed to investigate the role of frontopolar cortex in prospective memory (PM) by means of inhibitory theta-burst stimulation (cTBS). "Experiment 1"-8 volunteers were evaluated after inhibitory cTBS over left Brodmann area (BA) 10, right BA10, and Cz. In the PM procedure, sequences of 4 words each were presented. During the intersequence delay, subjects had to repeat the sequence in the observed order (ongoing task forward) or in the reverse order (backward). At the occurrence of a target word, subjects had to press a key on the keyboard (PM task). Recall and recognition of the target words were also tested. PM accuracy was lower after cTBS over left BA10 compared with Cz …
Neural networks engaged in milliseconds and seconds time processing: evidence from transcranial magnetic stimulation and patients with cortical or subcortical dysfunction
Here, we review recent transcranial magnetic stimulation studies and investigations in patients with neurological disease such as Parkinson's disease and stroke, showing that the neural processing of time requires the activity of wide range-distributed brain networks. The neural activity of the cerebellum seems most crucial when subjects are required to quickly estimate the passage of brief intervals, and when time is computed in relation to precise salient events. Conversely, the circuits involving the striatum and the substantia nigra projecting to the prefrontal cortex (PFC) are mostly implicated in supra-second time intervals and when time is processed in conjunction with other cognitiv…
Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum
Objective: The cerebellum takes part in several motor functions through its influence on the motor cortex (M1). Here, we applied the theta burst stimulation (TBS) protocol, a novel form of repetitive Transcranial Magnetic Stimulation (rTMS) over the lateral cerebellum. The aim of this study was to test whether TBS of the lateral cerebellum could be able to modulate the excitability of the contralateral M1 in healthy subjects. Methods: Motor-evoked potentials (MEPs) amplitude, short intracortical inhibition (SICI), long intracortical inhibition (LICI) and short intracortical facilitation (SICF) were tested in the M1 before and after cerebellar continuous TBS (cTBS) or intermittent TBS (iTBS)…
High-frequency rTMS improves time perception in Parkinson disease.
Patients with Parkinson disease (PD) are impaired in time processing. The authors investigated the effects of high-frequency (5 Hz) repetitive transcranial magnetic stimulation (rTMS) in patients with PD performing a time reproduction task. The authors found significant improvement in time processing induced by rTMS when trains were applied over the right dorsolateral prefrontal cortex (DLPFC) but not over the supplementary motor area, suggesting that the circuit involving the basal ganglia and the DLPFC might constitute the neural network subserving time perception.
Perceiving numbers alters time perception.
The representation of time, space and numbers are strictly linked in the primate's cognitive system. Here we show that merely looking at number symbols biases a temporal judgment on their duration depending upon the number's magnitude. In a first experiment, a group of healthy subjects was submitted to a time estimation task, requiring to judge whether the duration of a test stimulus was longer or shorter than that of a previous reference fixed stimulus (digit 5; duration 300 ms). Test stimuli were the digits 1, 5 and 9 ranging between 250 and 350 ms. The main results showed that temporal perception was biased according to the magnitude expressed by the digit: low digits (i.e. 1) leading to…
The use of transcranial magnetic stimulation in spatial cognition
In vivo definition of parieto-motor connections involved in planning of grasping movements
We combined bifocal transcranial magnetic stimulation (TMS) and diffusion tensor imaging (DTI) tractography to investigate in humans the contribution of connections originating from different parietal areas in planning of different reaching to grasp movements. TMS experiments revealed that in the left hemisphere functional connectivity between the primary motor cortex (M1) and a portion of the angular gyrus (AG) close to the caudal intraparietal sulcus was activated during early preparation of reaching and grasping movements only when the movement was made with a whole hand grasp (WHG) towards objects in contralateral space. In contrast, a different pathway, linking M1 with a part of the su…
Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation.
Noninvasive brain stimulation offers the possibility to induce changes in cortical excitability and it is an interesting option as a remediation tool for the treatment of developmental disorders. This study aimed to investigate the effect of transcranial direct current stimulation (tDCS) on reading and reading-related skills of children and adolescents with dyslexia. Nineteen children and adolescents with dyslexia performed different reading and reading-related tasks (word, nonword, and text reading; lexical decision; phonemic blending; verbal working memory; rapid automatized naming) in a baseline condition without tDCS and after 20 min of exposure to three different tDCS conditions: left …
Repetitive TMS of cerebellum interferes with millisecond time processing
Time processing is important in several cognitive and motor functions, but it is still unclear how the human brain perceives time intervals of different durations. Processing of time in millisecond and second intervals may depend on different neural networks and there is now considerable evidence to suggest that these intervals are possibly measured by independent brain mechanisms. Using repetitive transcranial magnetic stimulation (rTMS), we determined that the cerebellum is essential in explicit temporal processing of millisecond time intervals. In the first experiment, subjects' performance in a time reproduction task of short (400-600 ms) and long (1,600-2,400 ms) intervals, were evalua…
The Right Frontopolar Cortex Is Involved in Visual-Spatial Prospective Memory
The involvement of frontopolar cortex in mediating prospective memory processes has been evidenced by various studies, mainly by means of neuroimaging techniques. Recently, one transcranial magnetic stimulation study documented that transient inhibition of left Brodmann Area (BA) 10 impaired verbal prospective memory. This result raises the issue of whether the BA 10 involvement in prospective memory functioning may be modulated by the physical characteristics of the stimuli used. The present study aimed to investigate the role of the frontopolar cortex in visual-spatial PM by means of the application of inhibitory theta-burst stimulation. Twelve volunteers were evaluated after inhibitory t…
Changes in Cerebello-motor Connectivity during Procedural Learning by Actual Execution and Observation
Abstract The cerebellum is involved in motor learning of new procedures both during actual execution of a motor task and during observational training. These processes are thought to depend on the activity of a neural network that involves the lateral cerebellum and primary motor cortex (M1). In this study, we used a twin-coil TMS technique to investigate whether execution and observation of a visuomotor procedural learning task is related to modulation of cerebello-motor connectivity. We observed that, at rest, a magnetic conditioning pulse applied over the lateral cerebellum reduced the motor-evoked potentials obtained by stimulating the contralateral M1, indicating activation of a cerebe…
Integration of cognitive allocentric information in visuospatial short-term memory through the hippocampus
Visuospatial short-term memory relies on a widely distributed neocortical network: some areas support the encoding process of the visually acquired spatial information, whereas other ares are more involved in the active maintenance of the encoded information. Recently, in a pointing to remembered targets task, it has been shown in healthy subjects that, for memory delays of 5 s, spatial errors are affected also by cognitive allocentric information, i.e., covert spatial information derived from a pure mental representation. We tested the effect of a lesion of the hippocampus on the accuracy of pointing movements toward remembered targets, with memory delays falling in the 0.5-30 s range. The…
Representation of time intervals in the right posterior parietal cortex: implications for a mental time line
Space and time interact with each other in the cognitive system. Recent studies indicate the posterior parietal cortex (PPC) as the neural correlate of spatial-temporal interactions. We studied whether the contribution of the PPC becomes critical in tasks requiring the performance of spatial computations on time intervals. We adopted an integrated neuropsychological and transcranial magnetic stimulation (rTMS) approach, presenting behavioural timing tasks to both healthy subjects and right-brain-damaged patients with and without evidence of spatial neglect. rTMS of the right PPC of healthy subjects induced a lateralised bias during a task requiring setting the midpoint of a time interval. T…
Memory for time intervals is impaired in left hemi-Parkinson patients.
The basal ganglia have been proposed as one of the neural correlates of timekeeping functions. Both encoding and memory retrieval components for time perception are impaired in Parkinson's disease (PD). The aim of our study was to investigate in hemi-Parkinsonian patients the existence of a specific alteration in memory for time depending on the affected side, to better understand the contribution of the left or right basal ganglia circuits in different components of time perception. Right and left hemi-PD patients performed a time reproduction task in which they were required to reproduce in the same session short (5 s) and long (15 s) time intervals, in off- and on-therapy condition. Whil…
Impaired reproduction of second but not millisecond time intervals in Parkinson's disease
The basal ganglia have been associated with temporal processing in ranges of milliseconds and seconds. However, results from PD patient studies are elusive. Time perception in these patients has been tested with different approaches including repetitive movement tasks (i.e. finger tapping) and cognitive tasks (i.e. time reproduction), and both abnormal and normal performances have been reported for different time intervals. Furthermore, when PD patients were required to learn two target durations in the same session when they were off medication, they overestimated the short duration and underestimated the long duration in the seconds range. This pattern of temporal accuracy was described a…
Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects
article i nfo Objective: The effects of a novel repeated muscle vibration intervention (rMV; 100 Hz, 90 min over 3 consecutive days) on corticomotor excitability were studied in healthy subjects. Methods: rMV was applied over the flexor carpi radialis (FCR) during voluntary contraction (experiment 1), during relaxation and during contraction without vibration (experiment 2). Focal transcranial magnetic stimulation (TMS) was applied before rMV and one hour, and one, two and three weeks after the last muscle vibration intervention. At each of these time points, we assessed the motor map area and volume in the FCR, extensor digitorum communis (EDC) and abductor digiti minimi (ADM). Short-inter…
The what and how of observational learning
Abstract Neuroimaging evidence increasingly supports the hypothesis that the same neural structures subserve the execution, imagination, and observation of actions. We used repetitive transcranial magnetic stimulation (rTMS) to investigate the specific roles of cerebellum and dorsolateral prefrontal cortex (DLPFC) in observational learning of a visuomotor task. Subjects observed an actor detecting a hidden sequence in a matrix and then performed the task detecting either the previously observed sequence or a new one. rTMS applied over the cerebellum before the observational training interfered with performance of the new sequence, whereas rTMS applied over the DLPFC interfered with performa…
RELATIVISTIC COMPRESSION AND EXPANSION OF EXPERIENTIAL TIME IN THE LEFT AND RIGHT SPACE
Time, space and numbers are closely linked in the physical world. However, the relativistic-like effects on time perception of spatial and magnitude factors remain poorly investigated. Here we wanted to investigate whether duration judgments of digit visual stimuli are biased depending on the side of space where the stimuli are presented and on the magnitude of the stimulus itself. Different groups of healthy subjects performed duration judgment tasks on various types of visual stimuli. In the first two experiments visual stimuli were constituted by digit pairs (1 and 9), presented in the centre of the screen or in the right and left space. In a third experiment visual stimuli were constitu…
Subthalamic deep brain stimulation improves time perception in Parkinson's disease.
Alterations in temporal estimation have been observed in Parkinson's disease (PD) and have been associated with dopaminergic dysfunction. To investigate whether deep brain stimulation might reverse these abnormalities in PD, patients treated with electrode implantation for subthalamic deep brain stimulation were required to reproduce time intervals in different experimental conditions (off deep brain stimulation/off therapy, on deep brain stimulation/off therapy, on therapy/off deep brain stimulation). Patients treated with deep brain stimulation in off deep brain stimulation/off therapy displayed the anomalous pattern of responses typically observed in PD. When subthalamic deep brain stimu…
TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex
Using a twin coil transcranial magnetic stimulation (tc-TMS) approach we have previously demonstrated that facilitation may be detected in the primary motor cortex (M1) following stimulation over the ipsilateral caudal intraparietal sulcus (cIPS). Here we tested the interhemispheric interactions between the IPS and the contralateral motor cortex (M1). We found that conditioning the right cIPS facilitated contralateral M1 when the conditioning stimulus had an intensity of 90% resting motor threshold (RMT) but not at 70% or 110% RMT. Facilitation was maximal when the interstimulus interval (ISI) between cIPS and M1 was 6 or 12 ms. These facilitatory effects were mediated by interactions with …
Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans.
Connections between the cerebellum and the contralateral motor cortex are dense and important, but their physiological significance is difficult to measure in humans. We have studied a group of 10 healthy subjects to test whether a modulation of the excitability of the left cerebellum can affect the excitability of the contralateral motor cortex. We used repetitive transcranial magnetic stimulation (rTMS) at 1 Hz frequency to transiently depress the excitability of the left cerebellar cortex and paired-pulse TMS testing of intracortical inhibition (ICI) and intracortical facilitation (ICF) to probe the excitability of cortico-cortical connections in the right motor cortex. The cortical sile…
Motor and linguistic linking of space and time in the cerebellum
Background: Recent literature documented the presence of spatial-temporal interactions in the human brain. The aim of the present study was to verify whether representation of past and future is also mapped onto spatial representations and whether the cerebellum may be a neural substrate for linking space and time in the linguistic domain. We asked whether processing of the tense of a verb is influenced by the space where response takes place and by the semantics of the verb. Principal Findings: Responses to past tense were facilitated in the left space while responses to future tense were facilitated in the right space. Repetitive transcranial magnetic stimulation (rTMS) of the right cereb…
The role of transcranial magnetic stimulation in the study of cerebellar cognitive function.
Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of brain structures. This technique can be used either for stimulating the motor cortex, recording motor evoked potentials from peripheral muscles, or for modulating the excitability of other non-motor areas in order to establish their necessity for a given task. TMS of the cerebellum can give interesting insights on the cerebellar functions. Paired-TMS techniques, delivering stimuli over the cerebellum followed at various interstimulus intervals by stimuli over the motor cortex, allow studying the pattern of connectivity between the cerebellum and the contralateral motor cortex in physiological as well as in pathologic…
TMS-evoked long-lasting artefacts: A new adaptive algorithm for EEG signal correction
Abstract Objective During EEG the discharge of TMS generates a long-lasting decay artefact (DA) that makes the analysis of TMS-evoked potentials (TEPs) difficult. Our aim was twofold: (1) to describe how the DA affects the recorded EEG and (2) to develop a new adaptive detrend algorithm (ADA) able to correct the DA. Methods We performed two experiments testing 50 healthy volunteers. In experiment 1, we tested the efficacy of ADA by comparing it with two commonly-used independent component analysis (ICA) algorithms. In experiment 2, we further investigated the efficiency of ADA and the impact of the DA evoked from TMS over frontal, motor and parietal areas. Results Our results demonstrated t…
Overestimation of numerical distances in the left side of space
Normal subjects presented with a middle number and two left- and right-sided outer numbers overestimate the numerical distance between the middle number and that positioned at its left side. Repetitive transcranial magnetic stimulation (rTMS) of the right posterior parietal cortex specifically counteracts this bias, suggesting that the mental representation of space defined by numbers is shifted toward the left side depending on a greater activity of the right hemisphere.
Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect
Hemispatial neglect is common after unilateral brain damage, particularly to perisylvian structures in the right-hemisphere (RH). In this disabling syndrome, behaviour and awareness are biased away from the contralesional side of space towards the ipsilesional side. Theoretical accounts of this in terms of hemispheric rivalry have speculated that the intact left-hemisphere (LH) may become hyper-excitable after a RH lesion, due to release of inhibition from the damaged hemisphere. We tested this directly using a novel twin-coil transcranial magnetic stimulation (TMS) approach to measure excitability within the intact LH of neglect patients. This involved applying a conditioning TMS pulse ove…
Interference of left and right cerebellar rTMS with procedural learning.
Abstract Increasing evidence suggests cerebellar involvement in procedural learning. To further analyze its role and to assess whether it has a lateralized influence, in the present study we used a repetitive transcranial magnetic stimulation interference approach in a group of normal subjects performing a serial reaction time task. We studied 36 normal volunteers: 13 subjects underwent repetitive transcranial magnetic stimulation on the left cerebellum and performed the task with the right (6 subjects) or left (7 subjects) hand; 10 subjects underwent repetitive transcranial magnetic stimulation on the right cerebellum and performed the task with the hand ipsilateral (5 subjects) or contral…
Parieto-frontal interactions in visual-object and visual-spatial working memory: Evidence from transcranial magnetic stimulation
This study aimed to investigate whether transcranial magnetic stimulation (TMS) can induce selective working memory (WM) deficits of visual-object versus visual-spatial information in normal humans. Thirty-five healthy subjects performed two computerized visual n-back tasks, in which they were required to memorize spatial locations or abstract patterns. In a first series of experiments, unilateral or bilateral TMS was delivered on posterior parietal and middle temporal regions of both hemispheres after various delays during the WM task. Bilateral temporal TMS increased reaction times (RTs) in the visual-object, whereas bilateral parietal TMS selectively increased RTs in the visual-spatial W…