6533b7d2fe1ef96bd125ea85

RESEARCH PRODUCT

MLL-Rearranged Leukemia Is Dependent on Aberrant H3K79 Methylation by DOT1L

Joerg FaberNan ZhuSridhar VempatiAndrei V. KrivtsovLars BullingerKathrin M. BerntAmit U. SinhaAndrew L. KungRoy M. PollockZhaohui FengAmanda DaigleScott A. ArmstrongNatalie PuntVictoria M. Richon

subject

Cancer ResearchOncogene Proteins FusionCellular differentiationApoptosisBiologyMethylationArticleHistonesMice03 medical and health sciences0302 clinical medicinehemic and lymphatic diseasesmedicineAnimalsHumansEpigeneticsMyeloid Ecotropic Viral Integration Site 1 ProteinneoplasmsMyeloid Progenitor Cells030304 developmental biologyGene RearrangementHomeodomain Proteins0303 health sciencesLysineMyelodysplastic syndromesCell CycleCell DifferentiationCell BiologyHistone-Lysine N-MethyltransferaseMethyltransferasesMethylationDOT1Lmedicine.diseaseMolecular biologyHematopoiesisNeoplasm Proteins3. Good healthLeukemiaCell Transformation NeoplasticOncologyGenetic Loci030220 oncology & carcinogenesisHistone methyltransferaseCancer researchH3K4me3Protein Processing Post-TranslationalMyeloid-Lymphoid Leukemia Protein

description

SummaryThe histone 3 lysine 79 (H3K79) methyltransferase Dot1l has been implicated in the development of leukemias bearing translocations of the Mixed Lineage Leukemia (MLL) gene. We identified the MLL-fusion targets in an MLL-AF9 leukemia model, and conducted epigenetic profiling for H3K79me2, H3K4me3, H3K27me3, and H3K36me3 in hematopoietic progenitor and leukemia stem cells (LSCs). We found abnormal profiles only for H3K79me2 on MLL-AF9 fusion target loci in LSCs. Inactivation of Dot1l led to downregulation of direct MLL-AF9 targets and an MLL translocation-associated gene expression signature, whereas global gene expression remained largely unaffected. Suppression of MLL translocation-associated gene expression corresponded with dependence of MLL-AF9 leukemia on Dot1l in vivo. These data point to DOT1L as a potential therapeutic target in MLL-rearranged leukemia.

https://doi.org/10.1016/j.ccr.2011.06.010