6533b7d2fe1ef96bd125eb5f
RESEARCH PRODUCT
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.
Li ZhouJun CaoQian LiuXiang ZhouMichael WurmYayun DingYifang WangYangheng ZhengZhenyu ZhangQingmin Zhangsubject
Chemical Physics (physics.chem-ph)PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsbusiness.industryAttenuationDetectorFOS: Physical sciencesPhotodetectorScattering lengthInstrumentation and Detectors (physics.ins-det)ScintillatorHigh Energy Physics - ExperimentPhysics::Fluid DynamicsHigh Energy Physics - Experiment (hep-ex)symbols.namesakeOpticsPhysics - Chemical PhysicsScintillation countersymbolsRayleigh scatteringbusinessInstrumentationJiangmen Underground Neutrino Observatorydescription
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.
year | journal | country | edition | language |
---|---|---|---|---|
2015-04-04 | The Review of scientific instruments |