6533b7d2fe1ef96bd125eb86

RESEARCH PRODUCT

Tridiagonality, supersymmetry and non self-adjoint Hamiltonians

Francesco GarganoF. RoccatiFabio Bagarello

subject

Statistics and ProbabilityFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesFactorization0103 physical sciences010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsEigenvalues and eigenvectorsMathematicsQuantum PhysicsTridiagonal matrix010308 nuclear & particles physicsRecursion (computer science)Statistical and Nonlinear Physicstridiagonal matriceMathematical Physics (math-ph)SupersymmetryConnection (mathematics)non self-adjoint HamiltonianAlgebrabiorthogonal basesModeling and SimulationBiorthogonal systemQuantum Physics (quant-ph)Self-adjoint operator

description

In this paper we consider some aspects of tridiagonal, non self-adjoint, Hamiltonians and of their supersymmetric counterparts. In particular, the problem of factorization is discussed, and it is shown how the analysis of the eigenstates of these Hamiltonians produce interesting recursion formulas giving rise to biorthogonal families of vectors. Some examples are proposed, and a connection with bi-squeezed states is analyzed.

https://doi.org/10.1088/1751-8121/ab30db