0000000000179794
AUTHOR
F. Roccati
Tridiagonality, supersymmetry and non self-adjoint Hamiltonians
In this paper we consider some aspects of tridiagonal, non self-adjoint, Hamiltonians and of their supersymmetric counterparts. In particular, the problem of factorization is discussed, and it is shown how the analysis of the eigenstates of these Hamiltonians produce interesting recursion formulas giving rise to biorthogonal families of vectors. Some examples are proposed, and a connection with bi-squeezed states is analyzed.
Some remarks on few recent results on the damped quantum harmonic oscillator
Abstract In a recent paper, Deguchi et al. (2019), the authors proposed an analysis of the damped quantum harmonic oscillator in terms of ladder operators. This approach was shown to be partly incorrect in Bagarello et al. (2019), via a simple no-go theorem. More recently, (Deguchi and Fujiwara, 2019), Deguchi and Fujiwara claimed that our results in Bagarello et al. (2019) are wrong, and compute what they claim is the square integrable vacuum of their annihilation operators. In this brief note, we show that their vacuum is indeed not a vacuum, and we try to explain what is behind their mistakes in Deguchi et al. (2019) and Deguchi and Fujiwara (2019). We also propose a very simple example …
Calibration of high voltages at the ppm level by the difference of $$^{83{\mathrm{m}}}$$ 83m Kr conversion electron lines at the KATRIN experiment
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two $$^{83{\mathrm{m}}}$$ 83m Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements …
Modeling epidemics through ladder operators
Highlights • We propose an operatorial model to describe epidemics. • The model describes well the asymptotic numbers of the epidemics. • Ladder operators are used to model exchanges between the “actors” of the system.
Non-Hermitian skin effect as an impurity problem
A striking feature of non-Hermitian tight-binding Hamiltonians is the high sensitivity of both spectrum and eigenstates to boundary conditions. Indeed, if the spectrum under periodic boundary conditions is point gapped, by opening the lattice the non-Hermitian skin effect will necessarily occur. Finding the exact skin eigenstates may be demanding in general, and many methods in the literature are based on ansatzes and on recurrence equations for the eigenstates' components. Here we devise a general procedure based on the Green's function method to calculate the eigenstates of non-Hermitian tight-binding Hamiltonians under open boundary conditions. We apply it to the Hatano-Nelson and non-He…
Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment
Arenz, M., et al. “Reduction of Stored-Particle Background by a Magnetic Pulse Method at the KATRIN Experiment.” The European Physical Journal C, vol. 78, no. 9, Sept. 2018. © 2018 The Authors
Quantum correlations in PT -symmetric systems
Abstract We study the dynamics of correlations in a paradigmatic setup to observe PT -symmetric physics: a pair of coupled oscillators, one subject to a gain one to a loss. Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely. Both total and QCs exhibit different scalings of their long-time behavior in the PT -broken/unbroken phase and at the exceptional point (EP). In particular, PT symmetry breaking is accompanied by non-zero stationary QCs. This is analytically shown and quantitatively explained in terms of entropy balance. The EP in particular stands out as the most classical configuration…
First transmission of electrons and ions through the KATRIN beamline
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium β-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, …
Reply to Comment on "A no-go result for the quantum damped harmonic oscillator"
In a recent paper, \cite{deguchi}, Deguchi and Fujiwara claim that our results in \cite{BGR} are wrong, and compute what they claim is the square integrable vacuum of their annihilation operators. In this brief note, we show that their vacuum is indeed not a vacuum, and we try to explain what is behind their mistake. We also consider a very simple example clarifying the core of the problem.
A no-go result for the quantum damped harmonic oscillator
Abstract In this letter we show that it is not possible to set up a canonical quantization for the damped harmonic oscillator using the Bateman Lagrangian. In particular, we prove that no square integrable vacuum exists for the natural ladder operators of the system, and that the only vacua can be found as distributions. This implies that the procedure proposed by some authors is only formally correct, and requires a much deeper analysis to be made rigorous.
Calibration of high voltages at the ppm level by the difference of $^{83\mathrm{m}}$Kr conversion electron lines at the KATRIN experiment
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two [superscript 83m]Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2…
High-resolution spectroscopy of gaseous $^\mathrm{83m}$Kr conversion electrons with the KATRIN experiment
In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous $^\mathrm{83m}$Kr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The results obtained in this calibration measurement represent a major commissioning milestone for the upcoming direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the full KATRIN beamline. The KATRIN main spectrometer's excellent energy resolution of ~ 1 eV made it possible to determine the narrow K-32 and L$_3$-32 conversion electron line widths with an unprecedented precision of ~ 1 %.