6533b7d2fe1ef96bd125f4f0
RESEARCH PRODUCT
Effect of Reynolds number and lithium cation insertion on titanium anodization
Rita Sánchez-tovarE. Blasco-tamaritJosé García-antónR.m. Fernández-domeneJ. Borràs-ferríssubject
AnataseMaterials sciencehydrodynamic conditionsGeneral Chemical EngineeringIntercalation (chemistry)Analytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural scienceswater splittingINGENIERIA QUIMICAsymbols.namesakeElectrochemistryTiO2 nanotubesPhotocurrentelectrochemical impedance spectroscopy (EIS)Titani021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopyField emission microscopyElectroquímicachemistrysymbolsMott-Schottky analysisWater splitting0210 nano-technologyRaman spectroscopyTitaniumdescription
This work studies the influence of using hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during Ti anodization and Li+ intercalation on anatase TiO2 nanotubes. The synthesized photocatalysts were characterized by using Field Emission Scanning Electron Microscope (FE-SEM), Raman Confocal Laser Microscopy, Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky analysis (M-S), photoelectrochemical hydrogen production and resistance to photocorrosion tests. The obtained results showed that the conductivity of the NTs increases with Li+ intercalation and Re. The latter is due to the fact that the hydrodynamic conditions eliminate part of the initiation layer formed over the tube-tops, which is related to an increase of the photocurrent in the photoelectrochemical water splitting. Besides, the photogenerated electron-hole pairs are facilitated by Li+ intercalation. Finally, this work confirms that there is a synergistic effect between Re and Li+ intercalation.
year | journal | country | edition | language |
---|---|---|---|---|
2016-04-01 |