0000000000085979

AUTHOR

E. Blasco-tamarit

0000-0001-7314-082x

Influence of annealing atmosphere on photoelectrochemical response of TiO2 nanotubes anodized under controlled hydrodynamic conditions

[EN] The influence of three annealing atmospheres (air, nitrogen and argon) and the use of controlled hydrodynamic conditions (from 0 to 5000 rpm) on morphological, structural, chemical and photoelectrochemical properties of TiO2 nanotubes have been evaluated. For this purpose, different characterization techniques have been used: Field Emission Scanning Electron Microscopy, Raman Confocal Laser Spectroscopy, X-Ray Diffraction, X-Ray Photoelectron Spectroscopy, Incident Photon-to-electron Conversion Efficiency measurements, ultraviolet-visible absorption spectra, Mott-Schottky analysis and photoelectrochemical water splitting tests. According to the results, it can be concluded that both hy…

research product

Thermogalvanic corrosion of Alloy 31 in different heavy brine LiBr solutions

Thermogalvanic corrosion generated between two electrodes of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), has been investigated imposing different temperature gradients in three deaerated LiBr solutions, under open circuit conditions by using a zero-resistance ammeter (ZRA). Besides EIS spectra were acquired in order to explain the obtained results. On the whole, cold Alloy 31 electrodes were anodic to hot Alloy 31 electrodes, since an increase in temperature favoured the cathodic behaviour of the hot electrode. Thermogalvanic corrosion of Alloy 31 in the LiBr solutions studied was not severe, although it negatively affects the corrosion resistance of the cold anode. …

research product

Effect of Reynolds number and lithium cation insertion on titanium anodization

This work studies the influence of using hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during Ti anodization and Li+ intercalation on anatase TiO2 nanotubes. The synthesized photocatalysts were characterized by using Field Emission Scanning Electron Microscope (FE-SEM), Raman Confocal Laser Microscopy, Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky analysis (M-S), photoelectrochemical hydrogen production and resistance to photocorrosion tests. The obtained results showed that the conductivity of the NTs increases with Li+ intercalation and Re. The latter is due to the fact that the hydrodynamic conditions eliminate part of the initiation layer formed over the tu…

research product

Passivity Breakdown of Titanium in LiBr Solutions

The passive behavior of titanium and its susceptibility to undergo localized attack in different LiBr solutions at 25 degrees C have been investigated using different electrochemical techniques: potentiodynamic polarization curves, potentiostatic passivation tests, EIS measurements and Mott-Schottky analysis. In low and moderately concentrated LiBr solutions, the breakdown potential E-b decreased with increasing bromide concentrations, while in highly concentrated LiBr solutions, E-b increased with increasing LiBr concentration. In the most concentrated LiBr solution (11.42M) Ti did not undergo passivity breakdown even at 9 V-Ag/AgCl. This observation can be explained by a a decrease in the…

research product

Synergistic effect between hydrodynamic conditions during Ti anodization and acidic treatment on the photoelectric properties of TiO2 nanotubes

In the present work, the combined influence of controlled hydrodynamic conditions during Ti anodization and the acidic treatment with HClO4 on the photoelectric properties of mixed anatase/rutile TiO2 nanotubes has been studied. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FE-SEM), Confocal Raman Microscopy, electrochemical measurements (electrochemical impedance spectroscopy and Mott-Schottky analysis) and photoelectrochemical measurements. It has been observed that the use of hydrodynamic conditions increases the surface area of nanotubes, while acidic treatment enhances their conductivity. Besides, there is a clear synergistic effect between t…

research product

Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a highly concentrated LiBr solution

The influence of alloying elements on the electrochemical and semiconducting properties of thin passive films formed on several steels (carbon steel, ferritic and austenitic stainless steels) has been studied in a highly concentrated lithium bromide (LiBr) solution at 25 °C, by means of potentiodynamic tests and Mott Schottky analysis. The addition of Cr to carbon steel promoted the formation of a p-type semiconducting region in the passive film. A high Ni contentmodified the electronic behaviour of highly alloyed austenitic stainless steels.Mo did notmodify the electronic structure of the passive films, but reduced the concentration of defects.

research product

Repassivation of the damage generated by cavitation on UNS N08031 in a LiBr solution by means of electrochemical techniques and Confocal Laser Scanning Microscopy

Abstract The objective of this work is to study the influence of cavitation on the corrosion behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), in a LiBr heavy brine solution (992 g/L) at 25 °C. The presence of cavitation shifted the OCP value towards the active direction by 708 mVAg/AgCl, increased anodic current densities and passivation current density, ip, and reduced the pitting potential, Ep. Repassivation behaviour of Alloy 31 has been investigated by using potentiostatic tests at different potentials. The current density transient obtained after interrupting cavitation was used to obtain the repassivation index, n, provided by the slope of the log i(t) …

research product

Electrochemical formation of novel TiO2-ZnO hybrid nanostructures for photoelectrochemical water splitting applications

[EN] In this study, hybrid ZnO-TiO2 nanostructures have been synthesised by means of a simple electrochemical anodisation of titanium and subsequently ZnO electrodeposition. The influence of Zn(NO3)(2) concentration and temperature during the electrodeposition process was evaluated. Different techniques were used to analyse the synthesised nanostructures, notably Field Emission Scanning Electron Microscopy (FE-SEM) with Energy-dispersive X-ray spectroscopy (EDX) and Confocal Microscopy with Raman spectroscopy coupled with an Atomic Force Microscope. Photoelectrochemical water splitting tests were also performed at the hybrid nanostructures. According to the results, the photoelectrochemical…

research product

Cavitation corrosion and repassivation kinetics of titanium in a heavy brine LiBr solution evaluated by using electrochemical techniques and Confocal Laser Scanning Microscopy

The cavitation corrosion behaviour of commercially pure Grade 2 titanium in a 992 g/l LiBr solution has been investigated at 25 °C using an ultrasound device. Cavitation was found to have more influence on the anodic branch than on the cathodic branch, shifting the corrosion potential, Ecorr, and the OCP value towards more negative potentials, and increasing the corrosion current density, icorr, by six times. The repassivation kinetics of Grade 2 titanium have also been studied in the 992 g/l LiBr solution, at 25 °C and various applied potentials, using cavitation to damage the electrode surface. The repassivation kinetics have been analysed in terms of the current density flowing from the …

research product

TiO2 Nanostructures for Photoelectrocatalytic Degradation of Acetaminophen

[EN] Advanced oxidation processes driven by renewable energy sources are gaining attention in degrading organic pollutants in waste waters in an efficient and sustainable way. The present work is focused on a study of TiO2 nanotubes as photocatalysts for photoelectrocatalytic (PEC) degradation of acetaminophen (AMP) at different pH (3, 7, and 9). In particular, different TiO2 photocatalysts were synthetized by stirring the electrode at different Reynolds numbers (Res) during electrochemical anodization. The morphology of the photocatalysts and their crystalline structure were evaluated by field emission scanning electron microscopy (FESEM) and Raman confocal laser microscopy (RCLM). These a…

research product

Effect of Temperature on Thermogalvanic Coupling of Alloy 31 in Libr Solutions Studied by Means of Imposed Potential Measurements

[EN] Corrosion resistance of Alloy 31, a highly alloyed stainless steel (UNS N08031) were studied in heavy brine LiBr solutions (400, 700 and 992 g/l) at different temperatures using electrochemical techniques. The mixed potential theory was used to evaluate thermogalvanic corrosion of Alloy 31 in the studied LiBr solutions. Potentiodynamic curves indicate that high temperatures favoured both cathodic and anodic processes, increasing passive current densities and decreasing the pitting potential. Generally, the cold electrode of the pair was the anode of the thermogalvanic cell.

research product

Should TiO2 nanostructures doped with Li+ be used as photoanodes for photoelectrochemical water splitting applications?

[EN] Different TiO2 nanostructures, nanotubes and nanosponges, were obtained by anodization of Ti under stagnant and hydrodynamic conditions. Samples were doped with Li+ before and after annealing at 450 degrees C during 1 h. The nanostructures were characterized by different microscopy techniques: Field Emission Scanning Electron Microscopy (FE-SEM) and Raman Confocal Laser Microscopy. Additionally, Incident Photon-to-electron Conversion Efficiency (IPCE), photoelectrochemical water splitting and stability measurements were also performed. According to the results, TiO2 nanostructures doped before annealing present the worst photocurrent response, even if compared with undoped samples. On …

research product

Effect of temperature on the passive state of Alloy 31 in a LiBr solution: Passivation and Mott-Schottky analysis

The passive behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), has been investigated in a LiBr heavy brine (700 g/l) at different temperatures using potentiostatic polarisation and Mott-Schottky analysis. Cation vacancies have been found to be the dominant defect in the passive films formed on Alloy 31. An increase in temperature enhanced the generation of cation vacancies at the film/solution interface and raised the steady-state passive current density. The density of defects within the passive film also increased significantly with temperature, making the film more conductive and less protective against localised attacks.

research product

Novel TiO2-WO3 self-ordered nanotubes used as photoanodes: Influence of Na2WO4 and H2O2 concentration during electrodeposition

[EN] Hybrid TiO2-WO3 nanostructures has been synthesized by electrochemical anodization under controlled hydrodynamic conditions followed by electrodeposition in the presence of different contents of Na2WO4 (5, 15 and 25 mM) and H2O2 (20, 30 and 40 mM). The influence of the electrolyte used for electrodeposition on the morphology, crystalline structure and photoelectrochemical response for water splitting has been evaluated through Field Emission Electronic Microscopy, High-Resolution Transmission Electron Microscopy, Confocal Raman Spectroscopy, Grazing Incidence X Ray Diffraction, X-Ray Photoelectron Spectroscopy, Atomic Force microscopy and photocurrent versus potential measurements. Add…

research product