6533b7d3fe1ef96bd125ffd3
RESEARCH PRODUCT
Light flavor and heavy quark spin symmetry in heavy meson molecules
Juan NievesM. Pavón ValderramaC. Hidalgo-duquesubject
QuarkNuclear and High Energy PhysicsParticle physicsMesonNuclear TheoryHigh Energy Physics::LatticeBound statesNuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesScatteringNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBound stateEffective field theoryNuclear force010306 general physicsNuclear ExperimentPhysicsIsovectorNuclear-forces010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyOrder (ring theory)FísicaHigh Energy Physics - PhenomenologyIsospinEffective-field theoryHigh Energy Physics::ExperimentChiral lagrangianshadronic moleculesdescription
We propose an effective field theory incorporating light SU(3)-flavor and heavy quark spin symmetry to describe charmed meson-antimeson bound states. At lowest order the effective field theory entails a remarkable simplification: it only involves contact range interactions among the heavy meson and antimeson fields. We show that the isospin violating decays of the X(3872) can be used to constrain the interaction between the D and a (D) over bar* mesons in the isovector channel. As a consequence, we can rule out the existence of an isovector partner of the X(3872). If we additionally assume that the X(3915) and Y(4140) are D*(D) over bar* and D*(s)(D) over bar*(s) molecular states, we can determine the full spectrum of molecular states with isospin I = 0, 1/2 and 1.
year | journal | country | edition | language |
---|---|---|---|---|
2012-10-19 |