6533b7d3fe1ef96bd126002b
RESEARCH PRODUCT
A damping preconditioner for time-harmonic wave equations in fluid and elastic material
Jari ToivanenTuomas AiraksinenAnssi Pennanensubject
Algebraic multigrid methodPhysics and Astronomy (miscellaneous)Helmholtz equationGMRESNavier equationMathematics::Numerical AnalysisMultigrid methodHelmholtz equationäärellisten elementtien menetelmäMathematicsElastic scatteringNumerical AnalysisNavierin yhtälöPreconditionerApplied MathematicsMathematical analysispohjustinAcoustic waveWave equationAlgebrallinen multigrid-menetelmäHelmholzin yhtälöGeneralized minimal residual methodComputer Science::Numerical AnalysisFinite element methodComputer Science ApplicationselementtimenetelmäComputational MathematicsClassical mechanicsModeling and SimulationPreconditionerdescription
A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional domains. An algebraic multigrid method is used in approximating the inverse of damped operators. Several numerical experiments demonstrate the behavior of the method in complicated two-dimensional and three-dimensional domains. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2009-03-01 |