0000000000017874

AUTHOR

Anssi Pennanen

showing 7 related works from this author

A damping preconditioner for time-harmonic wave equations in fluid and elastic material

2009

A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional domains. An algebraic multigrid method is used in approximating the inverse of damped operators. Several numerical experiments demonstrate the behavior of the method in complicated two-dimensional and three-dimensional domains. peerReviewed

Algebraic multigrid methodPhysics and Astronomy (miscellaneous)Helmholtz equationGMRESNavier equationMathematics::Numerical AnalysisMultigrid methodHelmholtz equationäärellisten elementtien menetelmäMathematicsElastic scatteringNumerical AnalysisNavierin yhtälöPreconditionerApplied MathematicsMathematical analysispohjustinAcoustic waveWave equationAlgebrallinen multigrid-menetelmäHelmholzin yhtälöGeneralized minimal residual methodComputer Science::Numerical AnalysisFinite element methodComputer Science ApplicationselementtimenetelmäComputational MathematicsClassical mechanicsModeling and SimulationPreconditioner
researchProduct

Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions

2009

Fixed domain methods have well-known advantages in the solution of variable domain problems including inverse interface problems. This paper examines two new control approaches to optimal design problems governed by general elliptic boundary value problems with Dirichlet boundary conditions. Numerical experiments are also included peerReviewed

Optimal designkäänteisongelmatFictitious domain methodApplied MathematicsMathematical analysisMixed boundary conditionDomain (mathematical analysis)inversio-ongelmatComputer Science ApplicationsTheoretical Computer Sciencesymbols.namesakeoptimal controlDirichlet boundary conditionDirichlet's principleSignal Processingmuodon optimointishape optimizationsymbolsShape optimizationBoundary value problemMathematical PhysicsMathematics
researchProduct

Controllability method for acoustic scattering with spectral elements

2007

We formulate the Helmholtz equation as an exact controllability problem for the time-dependent wave equation. The problem is then discretized in time domain with central finite difference scheme and in space domain with spectral elements. This approach leads to high accuracy in spatial discretization. Moreover, the spectral element method results in diagonal mass matrices, which makes the time integration of the wave equation highly efficient. After discretization, the exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method. We illustrate the method with some numerical experiments, which demonstrate the significant improveme…

DiscretizationHelmholtz equationApplied MathematicsNumerical analysisSpectral element methodMathematical analysisSpectral element methodFinite difference methodExact controllabilityFinite element methodControllabilityakustinen sirontaComputational MathematicsMass lumpingHelmholtz equationSpectral methodMathematicsJournal of Computational and Applied Mathematics
researchProduct

An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation

2007

A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower freq…

Algebraic multigrid methodPhysics and Astronomy (miscellaneous)Helmholtz equationGMRESMathematics::Numerical Analysissymbols.namesakeMultigrid methodQuadratic equationHelmholtz equationäärellisten elementtien menetelmäMathematicsNumerical AnalysisPreconditionerApplied MathematicspohjustinMathematical analysisAlgebrallinen multigrid-menetelmäHelmholzin yhtälöComputer Science::Numerical AnalysisGeneralized minimal residual methodFinite element methodComputer Science ApplicationselementtimenetelmäComputational MathematicsModeling and SimulationHelmholtz free energysymbolsPreconditionerLaplace operatorJournal of Computational Physics
researchProduct

Time-harmonic elasticity with controllability and higher-order discretization methods

2008

The time-harmonic solution of the linear elastic wave equation is needed for a variety of applications. The typical procedure for solving the time-harmonic elastic wave equation leads to difficulties solving large-scale indefinite linear systems. To avoid these difficulties, we consider the original time dependent equation with a method based on an exact controllability formulation. The main idea of this approach is to find initial conditions such that after one time-period, the solution and its time derivative coincide with the initial conditions.The wave equation is discretized in the space domain with spectral elements. The degrees of freedom associated with the basis functions are situa…

Numerical AnalysisPhysics and Astronomy (miscellaneous)DiscretizationApplied MathematicsMathematical analysisLinear systemWave equationComputer Science ApplicationsControllabilityComputational Mathematicssymbols.namesakeModeling and SimulationDiagonal matrixTime derivativesymbolsGaussian quadratureSpectral methodMathematics
researchProduct

Controllability method for the Helmholtz equation with higher-order discretizations

2007

We consider a controllability technique for the numerical solution of the Helmholtz equation. The original time-harmonic equation is represented as an exact controllability problem for the time-dependent wave equation. This problem is then formulated as a least-squares optimization problem, which is solved by the conjugate gradient method. Such an approach was first suggested and developed in the 1990s by French researchers and we introduce some improvements to its practical realization. We use higher-order spectral elements for spatial discretization, which leads to high accuracy and lumped mass matrices. Higher-order approximation reduces the pollution effect associated with finite elemen…

Numerical AnalysisPartial differential equationPhysics and Astronomy (miscellaneous)Helmholtz equationApplied MathematicsMathematical analysisSpectral element methodFinite element methodComputer Science ApplicationsControllabilityakustinen sirontaComputational MathematicsMultigrid methodModeling and SimulationConjugate gradient methodSpectral methodMathematicsJournal of Computational Physics
researchProduct

A graph-based multigrid with applications

2010

osittaisdifferentiaaliyhtälötvirtauslaskentaEquationsalgebraic multigriddifferential equationsmultigrid methodsexact controllabilityyhtälöttietotekniikkaStokes equationNavier equationNavier-Stokes equationpreconditioningalgoritmitpartial differential equationssimulointiHelmholtz equation
researchProduct