0000000000017874

AUTHOR

Anssi Pennanen

A damping preconditioner for time-harmonic wave equations in fluid and elastic material

A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional domains. An algebraic multigrid method is used in approximating the inverse of damped operators. Several numerical experiments demonstrate the behavior of the method in complicated two-dimensional and three-dimensional domains. peerReviewed

research product

Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions

Fixed domain methods have well-known advantages in the solution of variable domain problems including inverse interface problems. This paper examines two new control approaches to optimal design problems governed by general elliptic boundary value problems with Dirichlet boundary conditions. Numerical experiments are also included peerReviewed

research product

Controllability method for acoustic scattering with spectral elements

We formulate the Helmholtz equation as an exact controllability problem for the time-dependent wave equation. The problem is then discretized in time domain with central finite difference scheme and in space domain with spectral elements. This approach leads to high accuracy in spatial discretization. Moreover, the spectral element method results in diagonal mass matrices, which makes the time integration of the wave equation highly efficient. After discretization, the exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method. We illustrate the method with some numerical experiments, which demonstrate the significant improveme…

research product

An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation

A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower freq…

research product

Time-harmonic elasticity with controllability and higher-order discretization methods

The time-harmonic solution of the linear elastic wave equation is needed for a variety of applications. The typical procedure for solving the time-harmonic elastic wave equation leads to difficulties solving large-scale indefinite linear systems. To avoid these difficulties, we consider the original time dependent equation with a method based on an exact controllability formulation. The main idea of this approach is to find initial conditions such that after one time-period, the solution and its time derivative coincide with the initial conditions.The wave equation is discretized in the space domain with spectral elements. The degrees of freedom associated with the basis functions are situa…

research product

Controllability method for the Helmholtz equation with higher-order discretizations

We consider a controllability technique for the numerical solution of the Helmholtz equation. The original time-harmonic equation is represented as an exact controllability problem for the time-dependent wave equation. This problem is then formulated as a least-squares optimization problem, which is solved by the conjugate gradient method. Such an approach was first suggested and developed in the 1990s by French researchers and we introduce some improvements to its practical realization. We use higher-order spectral elements for spatial discretization, which leads to high accuracy and lumped mass matrices. Higher-order approximation reduces the pollution effect associated with finite elemen…

research product

A graph-based multigrid with applications

research product