6533b7d6fe1ef96bd126720a
RESEARCH PRODUCT
An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation
Anssi PennanenTuomas AiraksinenErkki HeikkolaJari Toivanensubject
Algebraic multigrid methodPhysics and Astronomy (miscellaneous)Helmholtz equationGMRESMathematics::Numerical Analysissymbols.namesakeMultigrid methodQuadratic equationHelmholtz equationäärellisten elementtien menetelmäMathematicsNumerical AnalysisPreconditionerApplied MathematicspohjustinMathematical analysisAlgebrallinen multigrid-menetelmäHelmholzin yhtälöComputer Science::Numerical AnalysisGeneralized minimal residual methodFinite element methodComputer Science ApplicationselementtimenetelmäComputational MathematicsModeling and SimulationHelmholtz free energysymbolsPreconditionerLaplace operatordescription
A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower frequencies the growth is milder. The proposed preconditioner is particularly effective for low-frequency and mid-frequency problems. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2007-09-01 | Journal of Computational Physics |