6533b7d3fe1ef96bd1260a64

RESEARCH PRODUCT

Femtosecond parabolic pulse shaping in normally dispersive optical fibers

Miguel V. AndrésSergii O. IakushevIgor A. SukhoivanovOleksiy V. ShulikaAntonio Diez

subject

Femtosecond pulse shapingOptical fiberMaterials scienceLightPhysics::Opticslaw.inventionOpticslawDispersion (optics)ChirpFiber Optic TechnologyScattering RadiationComputer Simulationbusiness.industryPulse durationSignal Processing Computer-AssistedEquipment DesignModels TheoreticalSurface Plasmon ResonanceÒpticaPulse shapingAtomic and Molecular Physics and OpticsEquipment Failure AnalysisRefractometryFemtosecondComputer-Aided DesignbusinessPhotonic-crystal fiber

description

Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

10.1364/oe.21.017769https://doi.org/10.1364/OE.21.017769