6533b7d3fe1ef96bd12614fc

RESEARCH PRODUCT

Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans

Francisco Javier AznarNatalia Fraija-fernándezUrsula SiebertMercedes FernándezKristina LehnertJuan Antonio Raga

subject

0106 biological sciences0301 basic medicineHeredityTroglotrematidaePopulation Dynamicslcsh:MedicinePopulation geneticsMarine and Aquatic SciencesPathogenesisGeneralist and specialist speciesPathology and Laboratory Medicine01 natural sciencesMonophylyDatabase and Informatics MethodsOceansMedicine and Health Scienceslcsh:ScienceAtlantic OceanMammalseducation.field_of_studyLikelihood FunctionsMultidisciplinaryGeographyReproductive isolationDNA HelminthPhylogeographyGenetic MappingBiogeographyVertebratesHost-Pathogen InteractionsSequence AnalysisResearch ArticleReproductive IsolationBioinformaticsGenetic SpeciationDolphinsPopulationZoologyMarine BiologyBiologyResearch and Analysis Methods010603 evolutionary biology03 medical and health sciencesBodies of waterGeneticsMediterranean SeaAnimalseducationMarine MammalsIsolation by distanceDemographyEvolutionary BiologyAnalysis of VariancePopulation BiologyPilot Whaleslcsh:REcology and Environmental SciencesOrganismsWhalesBiology and Life SciencesGenetic VariationSequence Analysis DNAPhylogeography030104 developmental biologyHaplotypesAmniotesEarth SciencesBiological dispersallcsh:QCetaceaPopulation Genetics

description

We studied the phylogeography and historical demography of the most generalist digenean from cetaceans, Pholeter gastrophilus, exploring the effects of isolation by distance, ecological barriers and hosts' dispersal ability on the population structure of this parasite. The ITS2 rDNA, and the mitochondrial COI and ND1 from 68 individual parasites were analysed. Worms were collected from seven oceanic and coastal cetacean species from the south western Atlantic (SWA), central eastern Atlantic, north eastern Atlantic (NEA), and Mediterranean Sea. Pholeter gastrophilus was considered a single lineage because reciprocal monophyly was not detected in the ML cladogram of all individuals, and sequence variability was <1% for mtDNA and 0% for ITS2. These results rule out a recent suggestion that P. gastrophilus would actually be a cryptic-species complex. The genetic cohesion of P. gastrophilus could rely on the extensive exploitation of wide-ranging and highly mobile cetaceans, with a putative secondary role, if any, of intermediate hosts. Unique haplotypes were detected in SWA and NEA, and an AMOVA revealed significant population structure associated to the genetic variation in these regions. The Equator possibly acts as a significant geographical barrier for cetacean movements, possibly limiting gene flow between northern and southern populations of P. gastrophilus. A partial Mantel tests revealed that the significant isolation of NEA populations resulted from geographic clustering. Apparently, the limited mobility of cetaceans used by P. gastrophilus as definitive hosts in this region, coupled with oceanographic barriers and a patchy distribution of potential intermediate hosts could contribute to significant ecological isolation of P. gastrophilus in NEA. Rather unexpectedly, no genetic differentiation was found in the Mediterranean samples of this parasite. Historical demographic analyses suggested a recent population expansion of P. gastrophilus in the Atlantic Ocean, perhaps linked to initial association and subsequent spreading in cetaceans.

10.1371/journal.pone.0170184http://europepmc.org/articles/PMC5234839