6533b7d3fe1ef96bd1261627
RESEARCH PRODUCT
On an approximation problem for stochastic integrals where random time nets do not help
Stefan GeissChristel Geisssubject
Statistics and ProbabilityRandom time netsMeasurable functionStochastic processStochastic integralsApplied MathematicsUpper and lower boundsNatural filtrationCombinatoricsModeling and SimulationStopping timeModelling and SimulationAlmost surelyApproximationBorel measureBrownian motionMathematicsdescription
Abstract Given a geometric Brownian motion S = ( S t ) t ∈ [ 0 , T ] and a Borel measurable function g : ( 0 , ∞ ) → R such that g ( S T ) ∈ L 2 , we approximate g ( S T ) - E g ( S T ) by ∑ i = 1 n v i - 1 ( S τ i - S τ i - 1 ) where 0 = τ 0 ⩽ ⋯ ⩽ τ n = T is an increasing sequence of stopping times and the v i - 1 are F τ i - 1 -measurable random variables such that E v i - 1 2 ( S τ i - S τ i - 1 ) 2 ∞ ( ( F t ) t ∈ [ 0 , T ] is the augmentation of the natural filtration of the underlying Brownian motion). In case that g is not almost surely linear, we show that one gets a lower bound for the L 2 -approximation rate of 1 / n if one optimizes over all nets consisting of n + 1 stopping times. This lower bound coincides with the upper bound for all reasonable functions g in case deterministic time-nets are used. Hence random time nets do not improve the rate of convergence in this case. The same result holds true for the Brownian motion instead of the geometric Brownian motion.
year | journal | country | edition | language |
---|---|---|---|---|
2006-03-01 | Stochastic Processes and their Applications |