6533b7d4fe1ef96bd1261f7f
RESEARCH PRODUCT
Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of a Bacteriophytochrome
Gerrit GroenhofVaibhav ModiSerena DonniniDmitry Morozovsubject
Absorption spectroscopyProtein ConformationPopulationProtonationMolecular Dynamics SimulationCrystallography X-Ray010402 general chemistryPhotochemistry01 natural sciencesArticlequantum chemistrychemistry.chemical_compoundMolecular dynamicsPhotochromismBacterial Proteins0103 physical scienceskvanttikemiaMaterials ChemistrymolekyylidynamiikkaPhysical and Theoretical Chemistryeducationta116excited statesphytochromeeducation.field_of_studyBinding SitesBiliverdin010304 chemical physicsChemistryBiliverdineta1182Chromophoremolecular dynamics3. Good health0104 chemical sciencesSurfaces Coatings and FilmsSpectrophotometry UltravioletDensity functional theoryDeinococcusvalokemiaproteiinitdescription
The tetrapyrrole chromophore biliverdin IXα (BV) in the bacteriophytochrome from Deinococcus radiodurans (DrBphP) is usually assumed to be fully protonated, but this assumption has not been systematically validated by experiments or extensive computations. Here, we use force field molecular dynamics simulations and quantum mechanics/molecular mechanics calculations with density functional theory and XMCQDPT2 methods to investigate the effect of the five most probable protonation forms of BV on structural stability, binding pocket interactions, and absorption spectra in the two photochromic states of DrBphP. While agreement with X-ray structural data and measured UV/vis spectra suggest that in both states the protonated form of the chromophore dominates, we also find that a minor population with a deprotonated D-ring could contribute to the red-shifted tail in the absorption spectra.
year | journal | country | edition | language |
---|---|---|---|---|
2019-02-15 | The Journal of Physical Chemistry B |