6533b7d4fe1ef96bd12626d9
RESEARCH PRODUCT
Sequential Monte Carlo Methods in Random Intercept Models for Longitudinal Data
Danilo AlvaresNicolas ChopinAnabel ForteCarmen Armerosubject
Hybrid Monte Carlosymbols.namesakeComputer scienceMonte Carlo methodPosterior probabilityPrior probabilitysymbolsMonte Carlo integrationMarkov chain Monte CarloParticle filterAlgorithmMarginal likelihoodStatistics::Computationdescription
Longitudinal modelling is common in the field of Biostatistical research. In some studies, it becomes mandatory to update posterior distributions based on new data in order to perform inferential process on-line. In such situations, the use of posterior distribution as the prior distribution in the new application of the Bayes’ theorem is sensible. However, the analytic form of the posterior distribution is not always available and we only have an approximated sample of it, thus making the process “not-so-easy”. Equivalent inferences could be obtained through a Bayesian inferential process based on the set that integrates the old and new data. Nevertheless, this is not always a real alternative, because it may be computationally very costly in terms of both time and resources. This work uses the dynamic characteristics of sequential Monte Carlo methods for “static” setups in the framework of longitudinal modelling scenarios. We used this methodology in real data through a random intercept model.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |