6533b7d4fe1ef96bd1262aaf

RESEARCH PRODUCT

A mathematical model of exposure of nontarget Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe

Jeremy SweetAchim GathmannSalvatore ArpaiaG. NeemannYann DevosSylvie MestdaghK. LheureuxJoachim SchiemannF. OrtegoRosemary S. HailsJoe N. PerryDetlef BartschBarbara ManachiniJ. Kiss

subject

1001genetically modified maize Cry1Ab non-target Lepidoptera mathematical model exposure risk assessment60Bacillus thuringiensismedicine.disease_causeZea maysModels BiologicalGeneral Biochemistry Genetics and Molecular BiologyOstriniaExposureCropLepidoptera genitaliaHemolysin ProteinsMathematical modelBacterial ProteinsResearch articlesPollenBacillus thuringiensismedicineAnimalsPest Control BiologicalGeneral Environmental ScienceRisk assessmentGenetically modified maize31General Immunology and MicrobiologybiologyBacillus thuringiensis Toxinsbusiness.industryfungiPest controlPlutellafood and beveragesGeneral MedicineNon-target lepidopterabiology.organism_classificationPlants Genetically ModifiedEndotoxinsLepidopteraAgronomyGenetically modified maizePollenCry1abGeneral Agricultural and Biological SciencesbusinessButterflies

description

Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis ( Bt ), toxic to lepidopteran target pests such as Ostrinia nubilalis . An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt -containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality–dose relationship was integrated with a dose–distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth.

10.1098/rspb.2009.2091https://royalsocietypublishing.org/doi/10.1098/rspb.2009.2091