6533b7d5fe1ef96bd1263878
RESEARCH PRODUCT
The probability that $x^m$ and $y^n$ commute in a compact group
Kh HofmannFrancesco Russosubject
Haar measureProbability of commuting paircompact groupSettore MAT/09 - Ricerca OperativaLie groupdescription
In a recent article [K.H. Hofmann and F.G. Russo, The probability that $x$ and $y$ commute in a compact group, Math. Proc. Cambridge Phil. Soc., to appear] we calculated for a compact group $G$ the probability $d(G)$ that two randomly picked elements $x, y\in G$ satisfy $xy=yx$, and we discussed the remarkable consequences on the structure of $G$ which follow from the assumption that $d(G)$ is positive. In this note we consider two natural numbers $m$ and $n$ and the probabilty $d_{m,n}(G)$ that for two randomly selected elements $x, y\in G$ the relation $x^my^n=y^nx^m$ holds. The situation is more complicated whenever $n,m>1$. If $G$ is a compact Lie group and if its identity component $G_0$ is abelian, then it follows readily that $d_{m,n}(G)$ is positive. We show here that the following condition suffices for the converse to hold in an arbitrary compact group $G$: ``For any nonopen closed subgroup $H$ of $G$, the sets $\{g\in G: g^k\in H\}$ for both $k=m$ and $k=n$ have Haar measure $0$''. Indeed we show that if a compact group $G$ satisfies this condition and if $d_{m,n}(G)>0$, then the identity component of $G$ is abelian.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 |