6533b7d6fe1ef96bd1266597

RESEARCH PRODUCT

Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells

A. MoretónMiguel GuadaMiguel Angel GonzálezOmar S. MartinezS. Rodríguez-condeJuan JiménezL. A. Sánchez

subject

Materials sciencePhotoluminescenceSolid-state physicsSilicon020209 energychemistry.chemical_elementSolar cells multicrystalline silicon02 engineering and technologyMicroscopic scale0202 electrical engineering electronic engineering information engineeringMaterials ChemistryWaferElectrical and Electronic EngineeringImage resolutionbusiness.industryPhotovoltaic systemCiència dels materialsUMG siliconLBIC021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCharacterization (materials science)chemistrySemiconductorsOptoelectronics0210 nano-technologybusiness

description

Today’s photovoltaic market is dominated by multicrystalline silicon (mc-Si) based solar cells with around 70% of worldwide production. In order to improve the quality of the Si material, a proper characterization of the electrical activity in mc-Si solar cells is essential. A full-wafer characterization technique such as photoluminescence imaging (PLi) provides a fast inspection of the wafer defects, though at the expense of the spatial resolution. On the other hand, a study of the defects at a microscopic scale can be achieved through the light-beam induced current technique. The combination of these macroscopic and microscopic resolution techniques allows a detailed study of the electrical activity of defects in mc-Si solar cells. In this work, upgraded metallurgical grade Si solar cells are studied using these two techniques.

10.1007/s11664-018-6381-8https://hdl.handle.net/10550/70267