6533b7d6fe1ef96bd126660e
RESEARCH PRODUCT
Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions
Philippe JeandetMarielle Adriansubject
0106 biological sciences[SDV]Life Sciences [q-bio]Resveratrol01 natural sciencesConidiumchemistry.chemical_compoundBotrytis cinereaDrug DiscoveryStilbenesDISEASE RESISTANCEVitisPathogenBotrytis cinereachemistry.chemical_classificationELECTRON-MICROSCOPY0303 health sciencesbiologyPhytoalexinfood and beveragesBiological activityGeneral MedicineSpores FungalVITIS-VINIFERA LEAVESAntimicrobialABC TRANSPORTER BCATRB3. Good healthHost-Pathogen Interactions[SDE]Environmental SciencesGrapevineBotrytisSTILBENE PHYTOALEXINSMETABOLISMMicrobiology03 medical and health sciencesPhytoalexinsBotany[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSPHYTOALEXIN PHASEOLLINMode of action030304 developmental biologyPlant DiseasesPharmacologyBiological activityfungibiology.organism_classificationchemistryResveratrolGRAPEVINE LEAVESCAUSAL AGENT010606 plant biology & botanydescription
International audience; Many roles have been ascribed to stilbenes, namely as antimicrobial, deterrent or repellent compounds in plants, protecting them from attacks by fungi, bacteria, nematodes or herbivores, acting both as constitutive and active defense (phytoalexin) compounds. More recently, stilbenes (especially resveratrol and its derivatives) were acclaimed for their wondrous effects and wide range of purported healing and preventive powers as cardioprotective, antitumor, neuroprotective and antioxidant agents. Although there is a huge number of works concerning the role of resveratrol in human health, reports on the antifungal activity of this compound are still scarce. This study was thus conducted in order to investigate the toxicity of resveratrol at an ultrastructural level to dormant conidia of Botrytis cinerea, the causal microorganism for gray mold. In grapevine particularly, this disease can affect all the green organs but is particularly damaging for ripening berries. Observations using transmission electron microscopy showed the occurrence of damages on conidia treated with sub-lethal doses, that is, 60 mu g/mL (2.6 x 10(-4) M) of resveratrol, a concentration usually reached in grapevine leaves and grape berries challenged by this pathogen. These results provide further data about the overall mode of action of this phytoalexin and its role in the B. cinerea/grapevine interaction. (C) 2012 Elsevier B.V. All rights reserved.
year | journal | country | edition | language |
---|---|---|---|---|
2012-01-01 |