6533b7d6fe1ef96bd1266d29
RESEARCH PRODUCT
Endothelium, inflammation and cognition : focus on BDNF
Martin Pedardsubject
InflammationBdnfCognitionnervous systemFonction endothélialeTrkBEndothelial fonction[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC][SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Nodescription
BDNF (brain-derived neurotrophic factor) has been discovered in the brain and is widely implicated in neuroplasticity, memory and cognition through the activation of neuronal TrkB (tropomyosin receptor kinase B) receptors. We have recently shown that the cardiovascular system contained as much BDNF as the brain and that exogenous BDNF was able to induce endothelium-dependent vascular relaxation. Other studies have suggested that activation of endothelial TrkB receptors by BDNF is involved in atherosclerotic processes. Our laboratory suspects a close interaction between endothelial NO and BDNF and has even considered the possibility of involvement of BDNF secreted by cerebral microvessel endothelium in cognition. Patients suffering from rheumatoid arthritis (RA), an inflammatory disease of autoimmune origin, are at risk of cardiovascular disease and have an impairment of cognition, including a higher risk of depression. Surprisingly, the effect of RA on BDNF is poorly documented. The only available studies report an increase of BDNF in the blood and synovial fluid in RA. Our hypothesis is that a reduction in endothelial expression of BDNF may contribute to the cardiovascular risk and cognitive deficit associated with RA. Thus, in our work, we studied vascular and cerebral BDNF and its TrkB receptor on the rat model of adjuvant-induced arthritis.Our main findings show that arthritis leads to 1) a decrease in BDNF levels in aortas independently of the severity of inflammatory symptoms but dependent on endothelial function, 2) a decrease in brain BDNF levels independent of the severity of inflammatory symptoms, but link with endothelial function, 3) a decreased expression of BDNF and its activated TrkB receptor at both neuronal and endothelial levels in the brain regions involved in cognition, 4) a positive correlation between endothelial expression of BDNF and neuronal expression of activated TrkB, 5) a lack of correlation between serum BDNF levels and its cerebral or vascular levels, but on the other hand the existence of a positive correlation between serum BDNF levels and inflammation, whether clinical or biological.All of these data support the hypothesis that endothelial BDNF may be involved in atherosclerotic risk and cognitive impairment associated with arthritis. Inflammation should be considered as a confounding factor when circulating levels of BDNF are used as a reflection of levels present in the brain.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |