6533b7d7fe1ef96bd126863d
RESEARCH PRODUCT
Coil-bridge transition in a single polymer chain as an unconventional phase transition: theory and simulation.
Hsiao-ping HsuAlexander M. SkvortsovKurt BinderAlexey A. PolotskyLeonid I. Klushinsubject
chemistry.chemical_classificationPhase transitionCondensed matter physicsChemistryPolymersMonte Carlo methodGeneral Physics and AstronomyThermodynamicsPolymerPhase TransitionMicrocanonical ensemblePlanarTransition pointEnergy TransferLattice (order)Excluded volumeThermodynamicsAdsorptionPhysical and Theoretical ChemistryMonte Carlo Methoddescription
The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details of the first-order phase transition between the coil state at large height H ⩾ Htr and a bridge state at H ⩽ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate adsorption regime at (H/Na)tr ⩽ 0.27 where N is the number of monomer units of linear size a. An analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions is presented in this regime. The theory provides an excellent quantitative description of numerical results at all heights, 10 ⩽ H/a ⩽ 320 and all chain lengths 40 < N < 2560 without free fitting parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain in the strong adsorption regime at (H/Na)tr ⩾ 0.5 is presented. We discuss some unconventional properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved in the bridge state, and abnormal behavior in the microcanonical ensemble.
year | journal | country | edition | language |
---|---|---|---|---|
2014-05-28 | The Journal of chemical physics |