6533b7d7fe1ef96bd1268ff5
RESEARCH PRODUCT
Quantitative characterization of translational riboregulators using an in vitro transcription–translation system
André Estevez-torresAnis SenoussiAlfonso JaramilloAlfonso JaramilloAlfonso JaramilloJérôme RobertSven FindeissIlka M. AxmannJonathan Lee Tin WahYoshihiro Shimizusubject
0301 basic medicineRiboregulator[SDV.BIO]Life Sciences [q-bio]/BiotechnologyTranscription GeneticIn silicoBiomedical EngineeringComputational biologyReal-Time Polymerase Chain ReactionRibosomeBiochemistry Genetics and Molecular Biology (miscellaneous)FluorescenceSynthetic biologyViral Proteins03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA Transfer[CHIM]Chemical SciencesQH426GeneTranscription factor030304 developmental biology0303 health sciencesCell-free protein synthesisCell-Free SystemModels GeneticChemistryActivator (genetics)030302 biochemistry & molecular biologyRNADNADNA-Directed RNA PolymerasesGeneral MedicineCell-free protein synthesisMolecular machine3. Good health030104 developmental biologyGene Expression RegulationGenetic TechniquesProtein BiosynthesisRNA translational riboregulatorNucleic Acid ConformationRNAIn vitro synthetic biology5' Untranslated Regions030217 neurology & neurosurgeryDNAdescription
Riboregulators are short RNA sequences that, upon binding to a ligand, change their secondary structure and influence the expression rate of a downstream gene. They constitute an attractive alternative to transcription factors for building synthetic gene regulatory networks because they can be engineered de novo. However, riboregulators are generally designed in silico and tested in vivo, which provides little quantitative information about their performances, thus hindering the improvement of design algorithms. Here we show that a cell-free transcription-translation (TX-TL) system provides valuable information about the performances of in silico designed riboregulators. We first propose a simple model that provides a quantitative definition of the dynamic range of a riboregulator. We further characterize two types of translational riboregulators composed of a cis-repressed (cr) and a trans-activating (ta) strand. At the DNA level we demonstrate that high concentrations of taDNA poisoned the activator until total shut off, in agreement with our model, and that relative dynamic ranges of riboregulators determined in vitro are in agreement with published in vivo data. At the RNA level, we show that this approach provides a fast and simple way to measure dissociation constants of functional riboregulators, in contrast to standard mobility-shift assays. Our method opens the route for using cell-free TX-TL systems for the quantitative characterization of functional riboregulators in order to improve their design in silico.
year | journal | country | edition | language |
---|---|---|---|---|
2018-04-06 |