Non-perturbative VEVs from a local expansion
We propose a method for the calculation of vacuum expectation values (VEVs) given a non-trivial, long-distance vacuum wave functional (VWF) of the kind that arises, for example, in variational calculations. The VEV is written in terms of a Schr\"odinger-picture path integral, then a local expansion for (the logarithm of the) VWF is used. The integral is regulated with an explicit momentum cut-off, $\Lambda$. The resulting series is not expected to converge for $\Lambda$ larger than the mass-gap but studying the domain of analyticity of the VEVs allows us to use analytic continuation to estimate the large-$\Lambda$ limit. Scalar theory in 1+1 dimensions is analyzed, where (as in the case of …
Quantitative characterization of translational riboregulators using an in vitro transcription–translation system
Riboregulators are short RNA sequences that, upon binding to a ligand, change their secondary structure and influence the expression rate of a downstream gene. They constitute an attractive alternative to transcription factors for building synthetic gene regulatory networks because they can be engineered de novo. However, riboregulators are generally designed in silico and tested in vivo, which provides little quantitative information about their performances, thus hindering the improvement of design algorithms. Here we show that a cell-free transcription-translation (TX-TL) system provides valuable information about the performances of in silico designed riboregulators. We first propose a …
Robust dynamical pattern formation from a multifunctional minimal genetic circuit.
Abstract Background A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control gene expression under variable environments such as the light-dark cycle. Results We propose a new mechanism to generate developmental patterns and oscillations using a minimal number of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal control of protein expression. He…
Engineering the smallest transcription factor: accelerated evolution of a 63-amino acid peptide dual activator-repressor
Transcription factors control gene expression in all life. This raises the question of what is the smallest protein that can support such activity. In nature, Cro from bacteriophage λ is the smallest known repressor (66 amino acids; a.a.) but activators are typically much larger (e.g. λ cI, 237 a.a.). Indeed, previous efforts to engineer a minimal activator from Cro resulted in no activityin vivo. In this study, we show that directed evolution results in a new Cro activator-repressor that functions as efficiently as λ cI,in vivo. To achieve this, we develop Phagemid-Assisted Continuous Evolution: PACEmid. We find that a peptide as small as 63-a.a. functions efficiently as an activator and/o…
Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions
46 pages, 4 tables, 6 figures, 3 additinoal files.
Synthetic biology: Engineered stable ecosystems
International audience; Co-culture of bacterial cells engineered with quorum-sensing and self-lysis circuits allows coupled oscillatory dynamics and stable states, opening the way to engineered microbial ecosystems with targeted dynamics and extending gene circuits to the ecosystem level.
Vanillin cell sensor
Our project for iGEM 2006 consisted of designing a cellular vanillin biosensor. We used an EnvZ -E. coli strain as a chassis, and constructed two different devices: a sensor and an actuator, assembled using OmpR-P as a standardised mediator. The sensor device contained a computation- ally designed vanillin receptor and a synthetic two-component signal transduction protein (Trz). The receptor protein was based on a ribose-binding protein as scaffold. The Trz was built by fusion of the periplasmic and transmembrane domains of a Trg protein with an EnvZ kinase domain. When the receptor complex binds Trg, an allosteric motion is propagated to the cyto- plasmic EnvZ kinase domain, resulting in a…
Expanding the toolbox for Synechocystis sp. PCC 6803 : validation of replicative vectors and characterization of a novel set of promoters
Cyanobacteria are promising ‘low-cost’ cell factories since they have minimal nutritional requirements, high metabolic plasticity and can use sunlight and CO2 as energy and carbon sources. The unicellular Synechocystis sp. PCC 6803, already considered the ‘green’ Escherichia coli, is the best studied cyanobacterium but to be used as an efficient and robust photoautotrophic chassis it requires a customized and well-characterized toolbox. In this context, we evaluated the possibility of using three self-replicative vectors from the Standard European Vector Architecture (SEVA) repository to transform Synechocystis. Our results demonstrated that the presence of the plasmid does not lead to an e…
Engineering a Circular Riboregulator in Escherichia coli
RNAs of different shapes and sizes, natural or synthetic, can regulate gene expression in prokaryotes and eukaryotes. Circular RNAs have recently appeared to be more widespread than previously thought, but their role in prokaryotes remains elusive. Here, by inserting a riboregulatory sequence within a group I permuted intron-exon ribozyme, we created a small noncoding RNA that self-splices to produce a circular riboregulator in Escherichia coli . We showed that the resulting riboregulator can trans -activate gene expression by interacting with a cis -repressed messenger RNA. We characterized the system with a fluorescent reporter and with an antibiotic resistance marker, and we modeled thi…
Accelerated evolution of a minimal 63–amino acid dual transcription factor
Transcription factors control gene expression in all life. This raises the question of what is the smallest protein that can support such activity. In nature, Cro from bacteriophage λ is one of the smallest known repressors (66 amino acids), and activators are typically much larger (e.g., λ cI, 237 amino acids). Previous efforts to engineer a minimal activator from λ Cro resulted in no activity in vivo in cells. In this study, we show that directed evolution results in a new Cro activator-repressor that functions as efficiently as λ cI in vivo. To achieve this, we develop phagemid-assisted continuous evolution (PACEmid). We find that a peptide as small as 63 amino acids functions efficientl…
Boolean computation in plants using post-translational genetic control and a visual output signal
[EN] Due to autotrophic growing capacity and extremely rich secondary metabolism, plants should be preferred targets of synthetic biology. However, developments in plants usually run below those in other taxonomic groups. In this work we engineered genetic circuits capable of logic YES, OR and AND Boolean computation in plant tissues with a visual output signal. The circuits, which are deployed by means of Agrobacterium tumefaciens, perform with the conditional activity of the MYB transcription factor Roseal from Antirrhinum majus inducing the accumulation of anthocyanins, plant endogenous pigments that are directly visible to the naked eye or accurately quantifiable by spectrophotometric a…
Two Dimensional Quantum Chromodynamics as the Limit of Higher Dimensional Theories
We define pure gauge $QCD$ on an infinite strip of width $L$. Techniques similar to those used in finite $TQCD$ allow us to relate $3D$-observables to pure $QCD_2$ behaviors. The non triviality of the $L \arrow 0$ limit is proven and the generalization to four dimensions described. The glueball spectrum of the theory in the small width limit is calculated and compared to that of the two dimensional theory.
Model-based design of RNA hybridization networks implemented in living cells
[EN] Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermo-dynamic model of the different stable…
Reinforcement learning in synthetic gene circuits.
Synthetic gene circuits allow programming in DNA the expression of a phenotype at a given environmental condition. The recent integration of memory systems with gene circuits opens the door to their adaptation to new conditions and their re-programming. This lays the foundation to emulate neuromorphic behaviour and solve complex problems similarly to artificial neural networks. Cellular products such as DNA or proteins can be used to store memory in both digital and analog formats, allowing cells to be turned into living computing devices able to record information regarding their previous states. In particular, synthetic gene circuits with memory can be engineered into living systems to al…
Engineering CRISPR guide RNA riboswitches for in vivo applications
CRISPR-based genome editing provides a simple and scalable toolbox for a variety of therapeutic and biotechnology applications. Whilst the fundamental properties of CRISPR proved easily transferable from the native prokaryotic hosts to eukaryotic and multicellular organisms, the tight control of the CRISPR-editing activity remains a major challenge. Here we summarise recent developments of CRISPR and riboswitch technologies and recommend novel functionalised synthetic-gRNA (sgRNA) designs to achieve inducible and spatiotemporal regulation of CRISPR-based genetic editors in response to cellular or extracellular stimuli. We believe that future advances of these tools will have major implicati…
Modulation of Intracellular O-2 Concentration in Escherichia coli Strains Using Oxygen Consuming Devices
International audience; The use of cell factories for the production of bulk and value-added compounds is nowadays an advantageous alternative to the traditional petrochemical methods. Nevertheless, the efficiency and productivity of several of these processes can improve with the implementation of micro-oxic or anoxic conditions. In the industrial setting, laccases are appealing catalysts that can oxidize a wide range of substrates and reduce O-2 to H2O. In this work, several laccase-based devices were designed and constructed to modulate the intracellular oxygen concentration in bacterial chassis. These oxygen consuming devices (OCDs) included Escherichia coil's native laccase (CueO) and …
Comparison of CRISPR and marker based methods for the engineering of phage T7
With the recent rise in interest in using lytic bacteriophages as therapeutic agents, there is an urgent requirement to understand their fundamental biology to enable the engineering of their genomes. Current methods of phage engineering rely on homologous recombination, followed by a system of selection to identify recombinant phages. For bacteriophage T7, the host genescmkortrxhave been used as a selection mechanism along with both type I and II CRISPR systems to select against wild-type phage and enrich for the desired mutant. Here we systematically compare all three systems; we show that the use of marker-based selection is the most efficient method and we use this to generate multiple …
Biodesign Research to Advance the Principles and Applications of Biosystems Design
Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7
This article belongs to the Section Bacterial Viruses.
Engineering of a Promoter Repressed by a Light-Regulated Transcription Factor in Escherichia coli
Light-regulated gene expression systems allow controlling gene expression in space and time with high accuracy. Contrary to previous synthetic light sensors that incorporate two-component systems which require localization at the plasma membrane, soluble one-component repression systems provide several advantageous characteristics. Firstly, they are soluble and able to diffuse across the cytoplasm. Secondly, they are smaller and of lower complexity, enabling less taxing expression and optimization of fewer parts. Thirdly, repression through steric hindrance is a widespread regulation mechanism that does not require specific interaction with host factors, potentially enabling implementation…