6533b7d8fe1ef96bd126a255

RESEARCH PRODUCT

Test of chiral perturbation theory in η decays

R. BossinghamC. A. MeyerJ. LüdemannR. P. HaddockA. NobleA. CooperM. A. FaesslerA. H. SanjariT. CaseB. SchmidH. MatthäyG. PinterK. BrauneJ. ZollC. FelixB. M. BarnettP. SchmidtD. WaltherEberhard KlemptG. FolgerL. MontanetW. DünnweberJames A. BistirlichH. P. DietzMichael KobelPàl HidasC.a. BakerD. UmerClaude AmslerM. SuffertI. AugustinF. WalterR. HackmannS. V. DombrowskiD. S. ArmstrongP. BirienKenneth M. CroweM. MerkelH. KalinowskiČ. ZupančičZ. JávorfiB. KämmleK. BeuchertC. KoloF. Ould-saadaC. StraßburgerD. JamnikP. IllingerN. P. HesseyD. EngelhardtJ. BroseF. H. HeinsiusC. VölckerU. WiednerMichael DoserMark J. BurchellJ. P. MerloM. EnglertMarcel KunzeK. KönigsmannT. KielJ. KisielH. BossyS. RavndalP. BlümD.v. BuggJ. SalkS. WaßmerC.j. BattyH. KochU. StrohbuschR. LanduaE. SchäferKrisztian Peters

subject

Quantum chromodynamicsCrystalNuclear physicsPhysicsParticle physicsChiral perturbation theoryPionPartial widthOrder (group theory)Charged particle

description

The decay of the η-meson into three pions plays an important role as a test of low-energy QCD calculations in the framework of chiral perturbation theory. Previous experiments show results that are inconclusive or even contradictory. The Crystal Barrel experiment at LEAR has determined the braching ratiosΓ(η→3π0)/Γ(η→π+π−π0)=1.47±0.09±0.15 andΓ(η→γγ)/Γ(η→π+π−π0)=1.88±0.10±0.17 using its unique features to detect charged particles as well as neutral particles. The value for the first ratio agrees nicely with the theoretical predictions and solves previous experimental uncertainties. The second value, which yields a partial width ofΓ(η→π+π−π0)=(0.24±0.03) keV, shows that the same next-to-leading order chiral perturbation theory calculations still have some problems.

https://doi.org/10.1007/bf02734034