6533b7d8fe1ef96bd126a402

RESEARCH PRODUCT

Dark gamma-ray bursts

Jia LiuVedran BrdarJoachim Kopp

subject

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAnnihilation010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsType II supernova01 natural sciencesHigh Energy Physics - PhenomenologySupernovaHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesGravitational collapseAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst010303 astronomy & astrophysicsLight dark matterStellar evolutionAstrophysics::Galaxy Astrophysics

description

Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a $p$-wave process than for $s$-wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to Standard Model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma ray burst" may be observable in CTA.

https://doi.org/10.1103/physrevd.95.055031