6533b7d8fe1ef96bd126a475

RESEARCH PRODUCT

The Indecomposable Solutions of Linear Congruences

Klaus Pommerening

subject

Mathematics - Number TheoryMathematics::Commutative AlgebraFOS: MathematicsNumber Theory (math.NT)11D79

description

This article considers the minimal non-zero (= indecomposable) solutions of the linear congruence $1\cdot x_1 + \cdots + (m-1)\cdot x_{m-1} \equiv 0 \pmod m$ for unknown non-negative integers $x_1, \ldots, x_n$, and characterizes the solutions that attain the Eggleton-Erd\H{o}s bound. Furthermore it discusses the asymptotic behaviour of the number of indecomposable solutions. The results have direct interpretations in terms of zero-sum sequences and invariant theory.

https://dx.doi.org/10.48550/arxiv.1703.03708