6533b7d8fe1ef96bd126b850
RESEARCH PRODUCT
Continuous monitoring of an intentionally-manufactured crack using an automated welding and in-process inspection system
Charles MacleodAnthony GachaganYashar JavadiEuan FosterDavid LinesEhsan MohseniCarmelo MineoStephen PierceMomchil Vasilevsubject
Ultrasonic phased arrayMaterials scienceTKMechanical engineeringchemistry.chemical_element02 engineering and technologyWeldingTungsten010402 general chemistryRobotic NDE01 natural sciencesSignallaw.inventionRobot weldingSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchinelawlcsh:TA401-492Deposition (phase transition)In-process inspectionRobotic weldingGeneral Materials ScienceIntentionally manufactured weld defectsGroove (music)Mechanical EngineeringContinuous monitoringCrack growth monitoringWork in process021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of Materialslcsh:Materials of engineering and construction. Mechanics of materials0210 nano-technologydescription
Abstract Automated weld deposition coupled with the real-time robotic Non-Destructive Evaluation (NDE) is used in this paper. For performance verification of the in-process inspection system, an intentionally embedded defect, a tungsten rod, is introduced into the multi-pass weld. A partially-filled groove (staircase) sample is also manufactured and ultrasonically tested to calibrate the real-time inspection implemented on all seven layers of the weld which are deposited progressively. The tungsten rod is successfully detected in the real-time NDE of the deposited position. The same robotic inspection system was then used to continuously monitor an intentionally-manufactured crack for 20 h. The crack was initiated 22 min after the weld ended and it grew quickly within the next 1.5 h. The crack growth stopped approximately after 2 h and no considerable change in the reflection signal was detected for the next 18 h of monitoring.
year | journal | country | edition | language |
---|---|---|---|---|
2020-06-01 |