6533b7d9fe1ef96bd126c1d3

RESEARCH PRODUCT

Influence of temperature on the hydration products of low pH cements

Isabelle PochardBertrand RevelT. T. H. BachAndré NonatC. Cau Dit CoumesCyrille Mercier

subject

EttringiteGypsumSilica fume[SDV]Life Sciences [q-bio]Inorganic chemistry0211 other engineering and technologiesMAS NMR-SPECTROSCOPYTRICALCIUM SILICATE02 engineering and technologyengineering.materialchemistry.chemical_compoundAdsorptionSI-29021105 building & construction[CHIM]Chemical SciencesGeneral Materials ScienceCALCIUM-SULFATEPART IIAL-27 NMRELEVATED-TEMPERATURESAnhydriteBuilding and ConstructionALUMINUM021001 nanoscience & nanotechnologyAlkali metalSilicateC-S-HchemistryChemical engineeringengineering0210 nano-technologyTernary operationPORTLAND-CEMENT

description

International audience; The chemical evolution of two hydrated "low pH" binders prepared from binary (60% Portland cement + 40% silica fume) or ternary (37.5% Portland cement +32.5% silica fume + 30% fly-ash) mixtures was characterized over one year at 20 degrees C. 50 degrees C, and 80 degrees C. The main hydrates were Al-substituted C-S-H. Raising the temperature from 20 to 80 degrees C caused a lengthening and cross-linking of their silicate chains. Ettringite that formed in pastes stored at 20 degrees C was destabilized. Only traces of calcium sulfate (gypsum and/or anhydrite) reprecipitated after one year in some materials cured at 50 degrees C and 80 degrees C. The sulfates released were therefore partially adsorbed on the C-A-S-H and dissolved in the pore solution. The pore solution pH dropped by about 2 units as the temperature increased. Conversely, the soluble alkali fractions did not change significantly. Only the ternary binder resulted in a pore solution pH below 11 at the three temperatures studied.

10.1016/j.cemconres.2012.03.009https://hal.archives-ouvertes.fr/hal-00760349