Search results for "ALUMINUM"

showing 10 items of 239 documents

Experimental and numerical investigation on a new FSW based metal to composite joining technique

2018

Abstract In the last decades, different techniques were proposed to join aluminum sheets with composites materials. Each of them has advantages and weak points over the others and new techniques and patents are continuously developed to overcome these difficulties. In this paper an experimental and numerical investigation on a new Friction Stir Welding based approach to mechanically join AA6082-T6 to self-reinforced polypropylene is presented. The aluminum sheet is pre-holed along both the sides of the weld line and a pinless tool generates the heat and pressure needed to prompt back-extrusion of the composite. New experimental fixtures and hole designs were investigated in order to enhance…

010302 applied physicsMaterials scienceFSWStrategy and ManagementComposite numberAluminum AlloyProcess (computing)Mechanical engineeringWeld line02 engineering and technologyManagement Science and Operations ResearchMechanical resistance021001 nanoscience & nanotechnology01 natural sciencesIndustrial and Manufacturing EngineeringStrategy and Management1409 Tourism Leisure and Hospitality Management0103 physical sciencesFriction stir weldingJoin (sigma algebra)Dissimilar jointThermoplastic compositePolypropylene0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJournal of Manufacturing Processes
researchProduct

Atomic layer deposition of aluminum oxide on modified steel substrates

2016

Abstract Al 2 O 3 thin films were grown by atomic layer deposition to thicknesses ranging from 10 to 90 nm on flexible steel substrates at 300 °C using Al(CH 3 ) 3 and H 2 O as precursors. The films grown to thicknesses 9–90 nm covered the rough steel surfaces uniformly, allowing reliable evaluation of their dielectric permittivity and electrical current densities with appreciable contact yield. Mechanical behavior of the coatings was evaluated by nanoindentation. The maximum hardness values of the Al 2 O 3 films on steel reached 12 GPa and the elastic modulus exceeded 280 GPa.

010302 applied physicsYield (engineering)Materials scienceMetallurgy02 engineering and technologySurfaces and InterfacesGeneral ChemistryChemical vapor depositionNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsAtomic layer deposition0103 physical sciencesMaterials ChemistrySurface modificationThin filmComposite material0210 nano-technologyElastic modulusAluminum oxideSurface and Coatings Technology
researchProduct

Phosphasalen group IV metal complexes: synthesis, characterization and ring opening polymerization of lactide.

2020

International audience; We report the synthesis of a series of Zr and Ti complexes bearing phosphasalen which differs from salen by the incorporation of two P atoms in the ligand backbone. The reaction of phosphasalen proligands (1a-1c)H2 with Zr(CH2Ph)4 led to different products depending on the nature of the N,N-linker in the ligand. In case of ethylene-linked phosphasalen, octahedral Zr complex 2a formed as a single stereoisomer in trans geometry. With the phenylene linker, it was shown by dynamic NMR spectroscopy that complex 2b exists as a mixture of trans and cis-β isomers in solution, both enantiomers (Δ and Λ) of the cis-β isomer being in fast equilibrium with respect to the NMR tim…

010402 general chemistryLIGANDS SYNTHESIS01 natural sciencesRing-opening polymerizationCoordination complexInorganic ChemistryINDIUM COMPLEXESOctahedral molecular geometry[CHIM]Chemical SciencesSALALEN COMPLEXESCYCLIC ESTERSCOORDINATION CHEMISTRYZIRCONIUM COMPLEXES; COORDINATION CHEMISTRY; SALALEN COMPLEXES; LIGANDS SYNTHESIS; INDIUM COMPLEXES; SALEN LIGANDS; CYCLIC ESTERS; INITIATORS; CATALYSIS; ALUMINUMchemistry.chemical_classification010405 organic chemistryLigandCATALYSISCationic polymerizationNuclear magnetic resonance spectroscopyALUMINUM0104 chemical sciencesCrystallographychemistrySALEN LIGANDSAlkoxy groupINITIATORS[CHIM.OTHE]Chemical Sciences/OtherIsomerizationZIRCONIUM COMPLEXESDalton transactions (Cambridge, England : 2003)
researchProduct

A Generalized Semiempirical Approach to the Modeling of the Optical Band Gap of Ternary Al-(Ga, Nb, Ta, W) Oxides Containing Different Alumina Polymo…

2021

A generalization of the modeling equation of optical band gap values for ternary oxides, as a function of cationic ratio composition, is carried out based on the semiempirical correlation between the differences in the electronegativity of oxygen and the average cationic electronegativity proposed some years ago. In this work, a novel approach is suggested to account for the differences in the band gap values of the different polymorphs of binary oxides as well as for ternary oxides existing in different crystalline structures. A preliminary test on the validity of the proposed modeling equations has been carried out by using the numerous experimental data pertaining to alumina and gallia p…

010405 organic chemistryGeneralizationChemistryBand gapCationic polymerizationThermodynamicsFunction (mathematics)Aluminum oxideComposition (combinatorics)010402 general chemistry01 natural sciencesArticleMixed oxides0104 chemical sciencesInorganic ChemistryCondensed Matter::Materials ScienceSettore ING-IND/23 - Chimica Fisica ApplicataBand GapPhysics::Atomic and Molecular ClustersPhysics::Chemical PhysicsPhysical and Theoretical ChemistryTernary operation
researchProduct

Mechanical and metallurgical characterization of AA6082-T6 sheet-bulk joints produced through a linear friction welding based approach

2020

In the last decades, new flexible manufacturing processes have been developed to face the demands, by many industrial fields, for highly customized complex functional parts. The peculiar design of these components often overcomes conventional sheet metal and bulk metal forming processes capabilities. In order to face this issue, new hybrid techniques, capable of exploit key advantages of different processes, have to be developed. In this study, a method to obtain sheet-bulk joints, based on the Linear Friction Welding process, is proposed. The feasibility of the technique was investigated through an experimental campaign carried out with varying pressure and oscillation frequency using AA60…

0209 industrial biotechnologyAluminum alloyMaterials scienceOscillationMetallurgyProcess (computing)02 engineering and technologyWeldingMicrostructureCharacterization (materials science)law.inventionMaterial flow020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringlawvisual_artSheet-bulkvisual_art.visual_art_mediumGeneral Materials ScienceFriction weldingSheet metalLinear friction weldingMicrostructureInternational Journal of Material Forming
researchProduct

Analysis of Electrical Energy Demands in Friction Stir Welding of Aluminum Alloys

2017

Abstract Manufacturing processes, as used for discrete part manufacturing, are responsible for a substantial part of the environmental impact of products. Despite that, most of metalworking processes are still poorly documented in terms of environmental footprint. To be more specific, the scientific research has well covered conventional machining processes, concerning the other processes there is a lack of knowledge in terms of environmental load characterization instead. The present paper aims to contribute to fill this knowledge gap and an energetic analysis of Friction Stir welding (FSW) is presented. Following the CO2PE! methodological approach, power studies and a preliminary time stu…

0209 industrial biotechnologyAluminum alloyMaterials scienceProcess (engineering)Electric potential energyFriction Stir WeldingSustainable manufacturing02 engineering and technologyGeneral MedicineEnergy consumption021001 nanoscience & nanotechnologyManufacturing engineeringEnergy efficiencyEngineering (all)020901 industrial engineering & automationMachiningMetalworkingFriction stir weldingEnvironmental impact assessment0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneEfficient energy useProcedia Engineering
researchProduct

Energy demand reduction of aluminum alloys recycling through friction stir extrusion processes implementation

2019

Abstract Aluminum alloys are characterized by high-energy demands for primary production. Recycling is a well-documented strategy to lower the environmental impact of light alloys production. Despite that, conventional recycling processes are still energy-intensive with a low energy efficiency. Also, permanent material losses occur during remelting because of oxidation. Recently, several solid-state recycling approaches have been analyzed; in fact, by avoiding the remelting step both energy and material can be saved and, therefore, the embodied energy of secondary production can be substantially reduced. In this paper, the solid-state approach Friction Stir Extrusion (FSE) is analyzed for a…

0209 industrial biotechnologyEnergy demandMaterials scienceAluminum alloyPrimary energyComparative analysiMetallurgychemistry.chemical_element02 engineering and technologyFSEIndustrial and Manufacturing EngineeringSolid state recycling020303 mechanical engineering & transports020901 industrial engineering & automationLow energy0203 mechanical engineeringchemistryArtificial IntelligenceAluminiumExtrusionReduction (mathematics)Embodied energySettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Weld quality prediction in linear friction welding of AA6082-T6 through an integrated numerical tool

2016

Abstract A numerical and an experimental campaign were carried out with varying oscillation frequency and interface pressure. The local values of the main field variables at the contact interface between the specimens were predicted by a Lagrangian, implicit, thermo-mechanical FEM model and used as input of a dedicated Neural Network (NN). The NN, integrated in the FEM environment, was designed in order to calculate both a Boolean output, indicating the occurrence of welding, and a continuous output, indicating the quality of the obtained solid state weld. The analysis of the obtained results allowed three different levels of bonding quality, i.e., no weld, sound weld and excess of heat, to…

0209 industrial biotechnologyEngineeringAluminum alloyField (physics)Interface (computing)Neural Network02 engineering and technologyWeldingIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationQuality (physics)lawFriction weldingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneFEMArtificial neural networkbusiness.industryOscillationMetals and AlloysStructural engineering021001 nanoscience & nanotechnologyFinite element methodComputer Science ApplicationsModeling and SimulationCeramics and CompositesLinear Friction Welding0210 nano-technologybusiness
researchProduct

On the impact of recycling strategies on energy demand and CO2 emissions when manufacturing Al-based components

2016

Abstract The industrial world is facing the challenge of reducing emissions by means of energy- and resource-efficient manufacturing strategies. In some cases, the exerted emissions and the energy demands related to conventional manufacturing processes are not as intensive as those required to extract and produce the raw materials of which the workpieces are made. Therefore, the consciousness of the impact of material usage and the eco-informed choice of the end-of-life scenarios are both needed in view of sustainable development. Aim of this paper is to offer a contribution to a better understanding of the environmental impact of forming and machining processes, for the production of Al-ba…

0209 industrial biotechnologyEngineeringSustainable manufacturingSustainable manufacturing; Recycling; Aluminum; Machining; Forming.02 engineering and technology010501 environmental sciencesRaw material01 natural sciencesSustainable manufacturing; Recycling; Aluminum; Machining; Forming020901 industrial engineering & automationMachiningProduction (economics)Environmental impact assessmentRecyclingSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione0105 earth and related environmental sciencesGeneral Environmental ScienceSustainable developmentEnergy demandbusiness.industrySustainable manufacturingAluminium recyclingForming.Environmental economicsMachiningManufacturing engineeringGeneral Earth and Planetary SciencesbusinessFormingAluminum
researchProduct

Influence of processing parameters and initial temper on Friction Stir Extrusion of 2050 aluminum alloy

2017

Abstract Friction Stir Extrusion is an innovative production technology that enables direct wire production via consolidation and extrusion of metal chips or solid billets. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be extruded. The stirring action of the tool produces plastic flow in the extrusion chamber, densifying and heating the charge so that finally, fully dense rods are extruded. Experiments have been carried out in order to investigate the influence of process parameters and initial temper of the base material on the process variables and on the extrudates’ mechanical properties.

0209 industrial biotechnologyMaterials scienceConsolidation (soil)Strategy and ManagementMetallurgyAlloychemistry.chemical_elementFriction Stir Extrusion FSE Recycling Aluminum alloys 205002 engineering and technologyManagement Science and Operations ResearchPlasticityengineering.material021001 nanoscience & nanotechnologyIndustrial and Manufacturing EngineeringRod020901 industrial engineering & automationchemistryAluminiumengineeringExtrusionComposite material0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJournal of Manufacturing Processes
researchProduct