6533b7d9fe1ef96bd126cdd5

RESEARCH PRODUCT

Sound attenuation and anharmonic damping in solids with correlated disorder

C. TomarasB. SchmidGabriele VilianiWalter SchirmacherGiacomo BaldiTullio ScopignoGiancarlo Ruocco

subject

Physicssound attenuation; anharmonic interactions; vibrational properties of disordered solids; boson peakPhysics and Astronomy (miscellaneous)Condensed matter physicsvibrational properties of disordered solidsAnharmonicity02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencessound attenuationlcsh:QC1-999boson peakAmorphous solidPosition (vector)0103 physical sciencesBoson peak010306 general physics0210 nano-technologylcsh:PhysicsAcoustic attenuationanharmonic interactions

description

We study via self-consistent Born approximation a model for sound waves in a disordered environment, in which the local fluctuations of the shear modulus G are spatially correlated with a certain correlation length The theory predicts an enhancement of the density of states over Debye's omega(2) law (boson peak) whose intensity increases for increasing correlation length, and whose frequency position is shifted downwards as lg. Moreover, the predicted disorder-induced sound attenuation coefficient r(k) obeys a universal scaling law F(k) = f (ke) for a given variance of G. Finally, the inclusion of the lowest-order contribution to the anharmonic sound damping into the theory allows us to reconcile apparently contradictory recent experimental data in amorphous SiO(2).

https://doi.org/10.5488/cmp.13.23606