6533b7d9fe1ef96bd126d67f

RESEARCH PRODUCT

Precision thrust cumulant moments atN3LL

Iain W. StewartMichael FickingerRiccardo AbbateAndré H. HoangVicent MateuVicent Mateu

subject

PhysicsNuclear and High Energy PhysicsParticle physicsNuclear Theory010308 nuclear & particles physicsElectron–positron annihilationFOS: Physical sciencesOrder (ring theory)01 natural sciencesOmegaHigh Energy Physics - ExperimentNuclear Theory (nucl-th)CombinatoricsHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)Power correctionHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesStrong couplingHigh Energy Physics::ExperimentMatrix element010306 general physicsNuclear theory

description

We consider cumulant moments (cumulants) of the thrust distribution using predictions of the full spectrum for thrust including O(alpha_s^3) fixed order results, resummation of singular N^3LL logarithmic contributions, and a class of leading power corrections in a renormalon-free scheme. From a global fit to the first thrust moment we extract the strong coupling and the leading power correction matrix element Omega_1. We obtain alpha_s(m_Z) = 0.1141 \pm (0.0004)_exp \pm (0.0014)_hadr \pm (0.0007)_pert, where the 1-sigma uncertainties are experimental, from hadronization (related to Omega_1) and perturbative, respectively, and Omega_1 = 0.372 \pm (0.044)_exp \pm (0.039)_pert GeV. The n-th thrust cumulants for n > 1 are completely insensitive to Omega_1, and therefore a good instrument for extracting information on higher order power corrections, Omega'_n/Q^n, from moment data. We find (\tilde Omega'_2)^(1/2) = 0.74 \pm (0.11)_exp \pm (0.09)_pert GeV.

https://doi.org/10.1103/physrevd.86.094002